Cln5 represents a new type of cysteine-based S -depalmitoylase linked to neurodegeneration (original) (raw)

The crystal structure of palmitoyl protein thioesterase 1 and the molecular basis of infantile neuronal ceroid lipofuscinosis

Proceedings of The National Academy of Sciences, 2000

Mutations in palmitoyl-protein thioesterase 1 (PPT1), a lysosomal enzyme that removes fatty acyl groups from cysteine residues in modified proteins, cause the fatal inherited neurodegenerative disorder infantile neuronal ceroid lipofuscinosis. The accumulation of undigested substrates leads to the formation of neuronal storage bodies that are associated with the clinical symptoms. Less severe forms of PPT1 deficiency have been found recently that are caused by a distinct set of PPT1 mutations, some of which retain a small amount of thioesterase activity. We have determined the crystal structure of PPT1 with and without bound palmitate by using multiwavelength anomalous diffraction phasing. The structure reveals an ␣͞␤-hydrolase fold with a catalytic triad composed of Ser115-His289-Asp233 and provides insights into the structural basis for the phenotypes associated with PPT1 mutations. This paper was submitted directly (Track II) to the PNAS office.

The Interactome of Palmitoyl-Protein Thioesterase 1 (PPT1) Affects Neuronal Morphology and Function

Frontiers in Cellular Neuroscience

Palmitoyl-protein thioesterase 1 (PPT1) is a depalmitoylation enzyme that is mutated in cases of neuronal ceroid lipofuscinosis (NCL). The hallmarks of the disease include progressive neurodegeneration and blindness, as well as seizures. In the current study, we identified 62 high-confident PPT1-binding proteins. These proteins included a self-interaction of PPT1, two V-type ATPases, calcium voltagegated channels, cytoskeletal proteins and others. Pathway analysis suggested their involvement in seizures and neuronal morphology. We then proceeded to demonstrate that hippocampal neurons from Ppt1−/− mice exhibit structural deficits, and further investigated electrophysiology parameters in the hippocampi of mutant mice, both in brain slices and dissociated postnatal primary cultures. Our studies reveal new mechanistic features involved in the pathophysiology of this devastating neurodegenerative disease.

Identification of substrates of palmitoyl protein thioesterase 1 highlights roles of depalmitoylation in disulfide bond formation and synaptic function

PLOS Biology, 2022

Loss-of-function mutations in the depalmitoylating enzyme palmitoyl protein thioesterase 1 (PPT1) cause neuronal ceroid lipofuscinosis (NCL), a devastating neurodegenerative disease. The substrates of PPT1 are largely undescribed, posing a limitation on molecular dissection of disease mechanisms and therapeutic development. Here, we provide a resource identifying >100 novel PPT1 substrates. We utilized Acyl Resin-Assisted Capture (Acyl RAC) and mass spectrometry to identify proteins with increased in vivo palmitoylation in PPT1 knockout (KO) mouse brains. We then validated putative substrates through direct depalmitoylation with recombinant PPT1. This stringent screen elucidated diverse PPT1 substrates at the synapse, including channels and transporters, G-protein–associated molecules, endo/exocytic components, synaptic adhesion molecules, and mitochondrial proteins. Cysteine depalmitoylation sites in transmembrane PPT1 substrates frequently participate in disulfide bonds in the ...

Reversible Cysteine Acylation Regulates the Activity of Human Palmitoyl-Protein Thioesterase 1 (PPT1)

PLOS ONE, 2016

Mutations in the depalmitoylating enzyme gene, PPT1, cause the infantile form of Neuronal Ceroid Lipofuscinosis (NCL), an early onset neurodegenerative disease. During recent years there have been different therapeutic attempts including enzyme replacement. Here we show that PPT1 is palmitoylated in vivo and is a substrate for two palmitoylating enzymes, DHHC3 and DHHC7. The palmitoylated protein is detected in both cell lysates and medium. The presence of PPT1 with palmitoylated signal peptide in the cell medium suggests that a subset of the protein is secreted by a nonconventional mechanism. Using a mutant form of PPT1, C6S, which was not palmitoylated, we further demonstrate that palmitoylation does not affect intracellular localization but rather that the unpalmitoylated form enhanced the depalmitoylation activity of the protein. The calculated Vmax of the enzyme was significantly affected by the palmitoylation, suggesting that the addition of a palmitate group is reminiscent of adding a noncompetitive inhibitor. Thus, we reveal the existence of a positive feedback loop, where palmitoylation of PPT1 results in decreased activity and subsequent elevation in the amount of palmitoylated proteins. This positive feedback loop is likely to initiate a vicious cycle, which will enhance disease progression. The understanding of this process may facilitate enzyme replacement strategies.

Biochemical analysis of mutations in palmitoyl-protein thioesterase causing infantile and late-onset forms of neuronal ceroid lipofuscinosis

Human Molecular Genetics, 2001

Deficiency in a recently characterized lysosomal enzyme, palmitoyl-protein thioesterase (PPT), leads to a severe neurodegenerative disorder of children, infantile neuronal ceroid lipofuscinosis (NCL). Over 36 different mutations in the PPT gene have been described, and missense mutations have been interpreted in the light of the recently solved X-ray crystallographic structure of PPT. In the current study, we assessed the biochemical impact of mutations through the study of cells derived from patients and from the expression of recombinant PPT enzymes in COS and Sf9 cells. All missense mutations associated with infantile NCL showed no residual enzyme activity, whereas mutations associated with late-onset phenotypes showed up to 2.15% residual activity. Two mutations increased the K m of the enzyme for palmitoylated substrates and were located in positions that would distort the palmitate-binding pocket. An initiator methionine mutation (ATG→ATA) in two late-onset patients was expressed at a significant level in COS cells, suggesting that the ATA codon may be utilized to a clinically important extent in vivo. The most common PPT nonsense mutation, R151X, was associated with an absence of PPT mRNA. Mannose 6-phosphate modification of wildtype and mutant PPT enzymes was grossly normal at the level of the phosphotransferase reaction. However, mutant PPT enzymes did not bind to mannose 6-phosphate receptors in a blotting assay. This observation was related to the failure of the mutant expressed enzymes to gain access to 'uncovering enzyme' (N-acetylglucosamine-1-phosphodiester α-N-acetyl glucosaminidase), presumably due to a block in transit out of the endoplasmic reticulum, where mutant enzymes are degraded.

Neuronal ceroid lipofuscinosis with DNAJC5/CSPα mutation has PPT1 pathology and exhibit aberrant protein palmitoylation

Acta neuropathologica, 2015

Neuronal ceroid lipofuscinoses (NCL) are a group of inherited neurodegenerative disorders with lysosomal pathology (CLN1-14). Recently, mutations in the DNAJC5/CLN4 gene, which encodes the presynaptic co-chaperone CSPα were shown to cause autosomal-dominant NCL. Although 14 NCL genes have been identified, it is unknown if they act in common disease pathways. Here we show that two disease-associated proteins, CSPα and the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1/CLN1) are biochemically linked. We find that in DNAJC5/CLN4 patient brains, PPT1 is massively increased and mis-localized. Surprisingly, the specific enzymatic activity of PPT1 is dramatically reduced. Notably, we demonstrate that CSPα is depalmitoylated by PPT1 and hence its substrate. To determine the consequences of PPT1 accumulation, we compared the palmitomes from control and DNAJC5/CLN4 patient brains by quantitative proteomics. We discovered global changes in protein palmitoylation, mainly involvi...

Identification of synaptic PPT1 substrates highlight roles of depalmitoylation in disulfide bond formation and synaptic function

2020

SUMMARYLoss-of-function mutations in the depalmitoylating enzyme palmitoyl protein thioesterase 1 (PPT1) cause Neuronal Ceroid Lipofuscinosis type 1 (CLN1), a devastating neurodegenerative disease. Here, we provide a resource identifying PPT1 substrates. We utilized Acyl Resin-Assisted Capture and mass spectrometry to identify proteins with increased in vivo palmitoylation in PPT1 knockout mouse brains. We then validated putative substrates through direct depalmitoylation with recombinant PPT1. This stringent screen elucidated >100 novel PPT1 substrates at the synapse, including channels and transporters, G-protein-associated molecules, endo/exocytic components, synaptic adhesion molecules, and mitochondrial proteins. Cysteine depalmitoylation sites in transmembrane PPT1 substrates frequently participate in disulfide bonds in the mature protein. We confirmed that depalmitoylation regulates disulfide bond formation in a tertiary screen analyzing post-translational modifications. C...

Neuronal ceroid lipofuscinosis with DNAJC5/CSPα mutation has PPT1 pathology and exhibits aberrant protein palmitoylation

1 (PPT1/CLN1) are biochemically linked. We find that in DNAJC5/CLN4 patient brains, PPT1 is massively increased and mis-localized. Surprisingly, the specific enzymatic activity of PPT1 is dramatically reduced. Notably, we demonstrate that CSPα is depalmitoylated by PPT1 and hence its sub-strate. To determine the consequences of PPT1 accumulation, we compared the palmitomes from control and DNAJC5/ CLN4 patient brains by quantitative proteomics. We discovered global changes in protein palmitoylation, mainly involving lysosomal and synaptic proteins. Our findings establish a functional link between two forms of NCL and serve as a springboard for investigations of NCL disease pathways. Keywords Neuronal ceroid lipofuscinosis (NCL) · Cysteine-string protein alpha (CSPα) · Palmitoyl-protein thioesterase 1 (PPT1) · Palmitoylation · Neurodegeneration Abstract Neuronal ceroid lipofuscinoses (NCL) are a group of inherited neurodegenerative disorders with lyso-somal pathology (CLN1-14). Recently, mutations in the DNAJC5/CLN4 gene, which encodes the presynaptic co-chaperone CSPα were shown to cause autosomal-dominant NCL. Although 14 NCL genes have been identified, it is unknown if they act in common disease pathways. Here we show that two disease-associated proteins, CSPα and the depalmitoylating enzyme palmitoyl-protein thioesterase