Biotic and abiotic factors affect microcystin-LR concentrations in water/sediment interface (original) (raw)

Abstract

Harmful cyanobacterial blooms are increasingly common in aquatic environments. This can lead to higher concentrations of cyanotoxins, such as microcystins (MCs), posing a great risk to diverse organisms, including humans. MCs are among the most commonly reported cyanotoxins in freshwater environments worldwide, where they may have different fates. MCs can adsorb to suspended particles into the water column and deposit onto the sediment where they can be affected by physical factors (e.g. winds in shallow lakes causing sediment resuspension) or biological factors (e.g. biodegradation). Here we focused on the conditions of a coastal shallow lagoon contaminated by MCs aiming to estimate the return of pre-existing MCs from the sediment to the water column, to evaluate the adsorption of dissolved MC-LR to the sediment and to verify the occurrence of biodegradation. In experiments with sediment, desorption and adsorption were tested under the influence of temperature, pH and aeration, reproducing conditions observed in the lagoon. MC-desorption was not detected under the tested conditions. Spiking MC-LR into lagoon water samples in the presence of sediment resulted in a 50 % reduction of soluble MC-LR concentration in control conditions (25°C, pH 8.0, no aeration). Increasing temperature (45°C) or introducing aeration further stimulated MC-LR removal from the water. Biodegradation was observed in sediment samples and interstitial water (even with tetracycline). The composition of the bacterial community differed in sediment and interstitial water: major phyla were Chloroflexi, Proteobacteria, Firmicutes, and OP3. From the assigned OTUs, we identified genera already described as MC degrading bacteria. Thus, the sediment is a key factor influencing the fate of MC-LR in this shallow coastal lake contributing to stable adsorption and biodegradation.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (59)

  1. Ame, M.V., Echenique, J.R., Pflugmacher, S., Wunderlin, D.A., 2006. Degradation of microcystin-RR by Sphingomonas sp CBA4 isolated from San Roque reservoir (Cordoba, Argentina). Biodegradation 17, 447-455.
  2. Andreote, F.D., Jiménez, D.J., Chaves, D., Dias, A.C.F., Luvizotto, D.M., Dini-Andreote, F., Fasanella, C.C., Lopez, M.V., Baena, S., Taketani, R.G., Melo, I.S., 2012. The micro- biome of Brazilian mangrove sediments as revealed by metagenomics. PLoS One 7 (6), e38600. https://doi.org/10.1371/journal.pone.0038600.
  3. Bourne, D.G., Jones, G.J., Blakeley, R.L., Jones, G.J., Negri, A.P., Riddles, P., 1996. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Appl. Environ. Microbiol. 62, 4086-4094.
  4. Bourne, D.G., Riddles, P., Jones, G.J., Smith, W., Blakeley, R.L., 2001. Characterization of a gene cluster involved in bacterial degradation of the cyanobacterial toxin micro- cystin LR. Environ. Toxicol. 16, 523-534.
  5. Bruno, A., Sandionigi, A., Rizzi, E., Bernasconi, M., Vicario, S., Galimberti, A., Cocuzza, C., Labra, M., Casiraghi, M., 2017. Exploring the under-investigated "microbial dark matter" of drinking water treatment plants. Sci. Rep. 7. https://doi.org/10.1038/ srep44350.
  6. Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.G., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108, 4516-4522. https://doi.org/10.1073/ pnas.1000080107.
  7. Carter, M.R., Gregorich, E., 2006. Soil sampling and methods of analysis. Measurement 44. https://doi.org/10.1017/S0014479708006546.
  8. Chen, W., Li, L., Gan, N., Song, L., 2006. Optimization of an effective extraction procedure for the analysis of microcystins in soils and lake sediments. Environ. Pollut. 143 (2), 241-246. https://doi.org/10.1016/j.envpol.2005.11.030.
  9. Chen, W., Song, L., Peng, L., Wan, N., Zhang, X., Gan, N., 2008. Reduction in microcystin concentrations in large and shallow lakes: Water and sediment-interface contribu- tions. Water Res. 42, 763-773. https://doi.org/10.1016/j.watres.2007.08.007.
  10. Chen, X., Yang, X., Yang, L., Xiao, B., Wu, X., Wang, J., Wan, H., 2010. An effective pathway for the removal of microcystin LR via anoxic biodegradation in lake sedi- ments. Water Res. 44 (6), 1884-1892. https://doi.org/10.1016/j.watres.2009.11\. 025. De Magalhães, L., Noyma, N.P., Furtado, L.L., Mucci, M., Van Oosterhout, F., Huszar, V.L.M., Marinho, M.M., Lurling, M., 2017. Efficacy of coagulants and ballast com- pounds in removal of cyanobacteria (Microcystis) from water of the tropical lagoon Jacarepaguá (Rio de Janeiro, Brazil). Estuaries Coasts 40 (1), 121-133. https://doi. org/10.1007/s12237-016-0125-x.
  11. Dziga, D., Wasylewski, M., Szetela, A., Bocheńska, O., Wladyka, B., 2012. Verification of the role of MlrC in microcystin biodegradation by studies using a heterologous ex- pressed enzyme. Chem. Res. Toxicol. 25, 1192-1194.
  12. Dziga, D., Wasylewski, M., Wladyka, B., Nybom, S., Meriluoto, J., 2013. Microbial de- gradation of microcystins. Chem. Res. Toxicol. 26, 841-852. https://doi.org/10\. 1021/tx4000045.
  13. Dziga, D., Maksylewicz, A., Maroszek, M., Budzyńska, A., Napiorkowska-Krzebietke, A., Toporowska, M., Meriluoto, J., 2017. The biodegradation of microcystins in tempe- rate freshwater bodies with previous cyanobacterial history. Ecotoxicol. Environ. Saf. 145, 420-430.
  14. Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., Knight, R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2 (16), 2194-2200. https://doi.org/10.1093/bioinformatics/btr381.
  15. Edwards, C., Graham, D., Fowler, N., Lawton, L.A., 2008. Biodegradation of microcystins and nodularin in freshwaters. Chemosphere 73 (8), 1315-1321.
  16. Ferrão-Filho, A.S., Domingos, P., Azevedo, S.M.F.O., 2002. Influences of a Microcystisaeruginosa Kützing bloom on zooplankton populations in Jacarepaguá Lagoon (Rio de Janeiro -Brazil). Limnologica 32, 295-308. https://doi.org/10.1016/ S0075-9511(02)80021-4.
  17. Glöckner, J., Kube, M., Shrestha, P.M., Weber, M., Glöckner, F.O., Reinhardt, R., Liesack, W., 2010. Phylogenetic diversity and metagenomics of candidate division OP3. Environ. Microbiol. 12 (5), 1218-1229. https://doi.org/10.1111/j.1462-2920.2010\. 02164.x.
  18. Gomes, A.M.A., 2011. Estudo fisiológico de cianobactérias formadoras de florações na lagoa de Jacarepaguá (RJ). Doctoral Thesis/IBCCF (Federal University of Rio de Janeiro) pages:143. .
  19. Gomes, A.M., Sampaio, P.L., Ferrão-Filho, A., 2009. Florações de cianobactérias tóxicas em uma lagoa costeira hipereutrófica do Rio de Janeiro/RJ (Brasil) e suas consequências para saúde humana. Oecologia Bras. 13 (2), 329-345.
  20. Harada, K.-I., 1996. Chemistry and detection of microcystins. In: Watanabe, M.F., Harada, K.I., Carmichael, W.W., Fujiki, H. (Eds.), Toxic Microcystis. CRC Press, Boca Raton, FL, pp. 103-148.
  21. Ho, L., Sawade, E., Newcombe, G., 2012. Biological treatment options for cyanobacteria metabolite removal -a review. Water Res. 46 (5), 1536-1548. https://doi.org/10\. 1016/j.watres.2011.11.018.
  22. Hugenholtz, P., Pitulle, C., Hershberger, K.L., Pace, N.R., 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180 (2), 366-376.
  23. Huisman, J., Codd, G.A., Paerl, H.W., Ibelings, B.W., Verspagen, J.M.H., Visser, P.M., 2018. Cyanobacterial blooms. Nat. Rev. Microbiol. 16.
  24. Kieber, R.J., Hartrey, L.M., Felix, D., Corzine, C., Avery, G.B., Mead, R.N., Skrabal, S.A., 2017. Photorelease of microcystin-LR from resuspended sediments. Harmful Algae 63, 1-6. https://doi.org/10.1016/j.hal.2017.01.002.
  25. Lauber, C.L., Hamady, M., Knight, R., Fierer, N., 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75 (15), 5111-5120. https://doi.org/10.1128/AEM. 00335-09.
  26. Li, J., Shi, G., Mei, Z., Wang, R., Li, D., 2016. Discerning biodegradation and adsorption of microcystin-LR in a shallow semi-enclosed bay and bacterial community shifts in response to associated process. Ecotoxicol. Environ. Saf. 132, 123-131. https://doi. org/10.1016/j.ecoenv.2016.05.033.
  27. Lichstein, H.C., Soule, M.H., 1944. Studies of the effect of sodium azide on microbic growth and respiration. I. The action of sodium azide on microbic growth. J. Bacteriol. 47, 239-251.
  28. Liu, G., Qian, Y., Dai, S., Feng, N., 2008. Adsorption of microcystin-LR and -LW on sus- pended particulate matter (SPM) at different pH. Water Air Soil Pollutant 192 (1-4), 67-76. https://doi.org/10.1007/s11270-008-9635-x.
  29. Liu, S., Ren, H., Shen, L., Lou, L., Tian, G., Zheng, P., Hu, B., 2015. pH levels drive bacterial community structure in sediments of the Qiantang River as determined by 454 pyrosequencing. Front. Microbiol. 6, 285. https://doi.org/10.3389/fmicb.2015\. 00285.
  30. Lombard, N., Prestat, E., Van Elsas, J.D., Simonet, P., 2011. Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol. Ecol. 78 (1), 31-49. https://doi.org/10.1111/j.1574-6941.2011.01140.x.
  31. Madigan, M.T., Martinko, J.M., Bender, K.S., Buckley, D.H., Stahl, D.A., 2015. Brock Biology of Microorganisms (Fourteenth Edition). Pearson, Boston.
  32. Magalhães, V.F., Soares, R.M., Azevedo, S.M.F.O., 2001. Microcystin contamination in fish from the Jacarepaguá Lagoon (Rio de Janeiro, Brazil): ecological implication and human health risk. Toxicon 39 (7), 10077-11085. https://doi.org/10.1016/S0041- 0101(00)00251-8.
  33. Maghsoudi, E., Prévost, M., Vo Duy, S., Sauvé, S., Dorner, S., 2015. Adsorption char- acteristics of multiple microcystins and cylindrospermopsin on sediment: Implications for toxin monitoring and drinking water treatment. Toxicon 103, 48-54. https://doi.org/10.1016/j.toxicon.2015.06.00.
  34. Meriluoto, J., Spoof, L., Codd, G.A. (Eds.), 2017. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis, 1st edition. Wiley 576p. ISBN: 978-1-119-06868-6.
  35. Miller, M.J., Critchley, M.M., Hutson, J., Fallowfield, H.J., 2001. The adsorption of cy- anobacterial hepatotoxins from water onto soil during batch experiments. Water Res. 35, 1461-1468.
  36. Miller, M.J., Hutson, J., Fallowfield, H.J., 2005. The adsorption of cyanobacterial hepa- toxins as a function of soil properties. J. Water Health 3 (4), 339-347. https://doi. org/10.2166/wh.2005.049.
  37. Morón-López, J., Nieto-Reyes, L., El-Shehawy, R., 2017. Assessment of the influence of key abiotic factors on the alternative microcystin degradation pathway(s) (mlr -): A detailed comparison with the mlr route (mlr +). Sci. Total Environ. 599, 1945-1953. https://doi.org/10.1016/j.scitotenv.2017.04.042\. 600.
  38. Newton, R.J., Jones, S.E., Eiler, A., Mcmahon, K.D., Bertilsson, S., 2011. A guide to the natural history of freshwater lake Bacteria. Microbiol. Mol. Biol. Rev. 75 (1), 14-49. https://doi.org/10.1128/MMBR.00028-10.
  39. Paerl, H.W., Otten, T.G., 2013. Blooms bite the hand that feeds them. Science 342 (6157), 433-434. https://doi.org/10.1126/science.1245276.
  40. Park, H.D., Sasaki, Y., Maruyama, T., Yanagisawa, E., Hiraishi, A., Kato, K., 2001. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium iso- lated from a hypertrophic lake. Environ. Toxicol. 16 (4), 337-343. https://doi.org/ 10.1002/tox.1041.
  41. Pramanik, A., Basak, P., Banerjee, S., Sengupta, S., Chattopadhyay, D., Bhattacharyya, M., 2015. Pyrosequencing based profiling of the bacterial community in the Chilika lake, the largest lagoon of India. Genom. Data 4, 112-114. https://doi.org/10.1016/j. gdata.2015.04.003.
  42. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data pro- cessing and web-based tools. Nucleic Acids Res. 41 (Database issue), D590-6. https:// doi.org/10.1093/nar/gks1219.
  43. Ramani, A., Rein, K., Shetty, K.G., Jayachandran, K., 2012. Microbial degradation of microcystin in Florida's freshwaters. Biodegradation 23, 35. https://doi.org/10\. 1007/s10532-011-9484-y.
  44. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J., Weber, C.F., 2009. Introducing mothur: open- source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75 (23), 7537-7541. https://doi.org/10.1128/AEM.01541-09.
  45. Shimizu, K., Maseda, H., Okano, K., Kurashima, T., Kawauchi, Y., Xue, Q., Utsumi, M., Zhang, Z., Sugiura, N., 2012. Enzymatic pathway for biodegrading microcystin-LR in Sphingopyxis sp. C-1. J. Biosci. Bioeng. 114, 630-634.
  46. Song, H.H., Reichwaldt, E.S., Ghadouani, A., 2014. Contribution of sediments in the re- moval of microcystin-LR from water. Toxicon 83, 84-90. https://doi.org/10.1016/j. toxicon.2014.02.019.
  47. Svircev, Z., Drobac, D., Tokodi, N., Mijovic, B., Codd, G.A., Meriluoto, J., 2017. Toxicology of microcystins with reference to cases of human intoxications and epi- demiological investigations of exposures to cyanobacteria and cyanotoxins. Arch. Toxicol. 91 (2), 621-650.
  48. Szlag, D.C., Sinclair, J.L., Southwell, B., Westrick, J.A., 2015. Cyanobacteria and cyano- toxins occurrence and removal from five high-risk conventional treatment drinking water plants. Toxins 7 (6), 2198-2220. https://doi.org/10.3390/toxins7062198.
  49. Tsuji, K., Naito, S., Kondo, F., Ishikawa, N., Watanabe, M.F., Suzuki, M., Harada, K., 1994. Stability of microcystins from cyanobacteria: effect of light on decomposition and isomerisation. Environ. Sci. Technol. 28, 173-177. https://doi.org/10.1021/ es00050a024.
  50. Tsuji, K., Masui, H., Uemura, H., Mori, Y., Harada, K.I., 2001. Analysis of microcystins in sediments using MMPB method. Toxicon 39, 687-692. https://doi.org/10.1016/ S0041-0101(00)00196-3.
  51. Verspagen, J.M.H., Snelder, E.O.F.M., Visser, P.M., Jöhnk, K.D., Ibelings, B.W., Mur, L.R., Huisman, J., 2005. Benthic-pelagic coupling in the population dynamics of the harmful cyanobacterium Microcystis. Freshw. Biol. 50, 854-867. https://doi.org/10\. 1111/j.1365-2427.2005.01368.x.
  52. Wu, X., Xiao, B., Li, R., Wang, C., Huang, J., Wang, Z., 2011. Mechanisms and factors affecting sorption of microcystins onto natural sediments. Environ. Sci. Technol. 45, 2641-2647. https://doi.org/10.1021/es103729m.
  53. Wu, X., Wang, C., Xiao, B., Wang, Y., Zheng, N., Liu, J., 2012. Optimal strategies for determination of free/extractable and total microcystins in lake sediment. Anal. Chim. Acta 709, 66-72. https://doi.org/10.1016/j.aca.2011.10.027.
  54. Wu, X., Wang, C., Tian, C., Xiao, B., Song, L., 2015. Evaluation of the potential of anoxic biodegradation of intracellular and dissolved microcystins in lake sediments. J. Hazard. Mater. 286, 395-401. https://doi.org/10.1016/j.jhazmat.2015.01.015.
  55. Yang, F., Zhou, Y., Yin, L., Zhu, G., Liang, G., Pu, Y., 2014. Microcystin-degrading activity of an indigenous bacterial strain Stenotrophomonas acidaminiphila MC-LTH2 isolated from Lake Taihu. PLoS One 9 (1), e86216. https://doi.org/10.1371/journal.pone. 0086216.
  56. Yang, F., Guo, J., Huang, F., Massey, I., Huang, R., Li, Y., Wen, C., Ding, P., Zeng, W., Liang, G., 2018. Removal of microcystin-LR by a novel native effective bacterial community designated as YFMCD4 isolated from Lake Taihu. Toxins 10 (9), 363. https://doi.org/10.3390/toxins10090363.
  57. Zhang, M., Pan, G., Yan, H., 2010. Microbial biodegradation of microcystin-RR by bac- terium Sphingopyxis sp. USTB-05. J. Environ. Sci. 22, 168-175.
  58. Zhang, J., Shi, H., Liu, A., Cao, Z., Hao, J., Gong, R., 2015a. Identification of a new microcystin-degrading bacterium isolated from Lake Chaohu, China. Bull. Environ. Contam. Toxicol. 94, 661-666. https://doi.org/10.1007/s00128-015-1531-7.
  59. Zhang, J., Yang, Y., Zhao, L., Li, Y., Xie, S., Liu, Y., 2015b. Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes. Appl. Microbiol. Biotechnol. 99 (7), 3291. https://doi.org/10.1007/s00253-014-6262-x.