Genetic Improvement of Saccharomyces cerevisiae for Ethanol Production from Xylosea (original) (raw)
Related papers
Applied and Environmental Microbiology, 2001
Fermentation of the pentose sugar xylose to ethanol in lignocellulosic biomass would make bioethanol production economically more competitive. Saccharomyces cerevisiae, an efficient ethanol producer, can utilize xylose only when expressing the heterologous genes XYL1 (xylose reductase) and XYL2 (xylitol dehydrogenase). Xylose reductase and xylitol dehydrogenase convert xylose to its isomer xylulose. The gene XKS1 encodes the xylulose-phosphorylating enzyme xylulokinase. In this study, we determined the effect of XKS1 overexpression on two different S. cerevisiae host strains, H158 and CEN.PK, also expressing XYL1 and XYL2. H158 has been previously used as a host strain for the construction of recombinant xylose-utilizing S. cerevisiae strains. CEN.PK is a new strain specifically developed to serve as a host strain for the development of metabolic engineering strategies. Fermentation was carried out in defined and complex media containing a hexose and pentose sugar mixture or a birch wood lignocellulosic hydrolysate. XKS1 overexpression increased the ethanol yield by a factor of 2 and reduced the xylitol yield by 70 to 100% and the final acetate concentrations by 50 to 100%. However, XKS1 overexpression reduced the total xylose consumption by half for CEN.PK and to as little as one-fifth for H158. Yeast extract and peptone partly restored sugar consumption in hydrolysate medium. CEN.PK consumed more xylose but produced more xylitol than H158 and thus gave lower ethanol yields on consumed xylose. The results demonstrate that strain background and modulation of XKS1 expression are important for generating an efficient xylose-fermenting recombinant strain of S. cerevisiae.
Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects
International journal of molecular sciences, 2016
Many years have passed since the first genetically modified Saccharomyces cerevisiae strains capable of fermenting xylose were obtained with the promise of an environmentally sustainable solution for the conversion of the abundant lignocellulosic biomass to ethanol. Several challenges emerged from these first experiences, most of them related to solving redox imbalances, discovering new pathways for xylose utilization, modulation of the expression of genes of the non-oxidative pentose phosphate pathway, and reduction of xylitol formation. Strategies on evolutionary engineering were used to improve fermentation kinetics, but the resulting strains were still far from industrial application. Lignocellulosic hydrolysates proved to have different inhibitors derived from lignin and sugar degradation, along with significant amounts of acetic acid, intrinsically related with biomass deconstruction. This, associated with pH, temperature, high ethanol, and other stress fluctuations presented ...
Biotechnology for Biofuels, 2019
Background: Xylose isomerase (XI) and xylose reductase/xylitol dehydrogenase (XR/XDH) pathways have been extensively used to confer xylose assimilation capacity to Saccharomyces cerevisiae and tackle one of the major bottlenecks in the attainment of economically viable lignocellulosic ethanol production. Nevertheless, there is a lack of studies comparing the efficiency of those pathways both separately and combined. In this work, the XI and/or XR/ XDH pathways were introduced into two robust industrial S. cerevisiae strains, evaluated in synthetic media and corn cob hemicellulosic hydrolysate and the results were correlated with the differential enzyme activities found in the xylose-pathway engineered strains. Results: The sole expression of XI was found to increase the fermentative capacity of both strains in synthetic media at 30 °C and 40 °C: decreasing xylitol accumulation and improving xylose consumption and ethanol production. Similar results were observed in fermentations of detoxified hydrolysate. However, in the presence of lignocellulosicderived inhibitors, a positive synergistic effect resulted from the expression of both XI and XR/XDH, possibly caused by a cofactor equilibrium between the XDH and furan detoxifying enzymes, increasing the ethanol yield by more than 38%. Conclusions: This study clearly shows an advantage of using the XI from Clostridium phytofermentans to attain high ethanol productivities and yields from xylose. Furthermore, and for the first time, the simultaneous utilization of XR/ XDH and XI pathways was compared to the single expression of XR/XDH or XI and was found to improve ethanol production from non-detoxified hemicellulosic hydrolysates. These results extend the knowledge regarding S. cerevisiae xylose assimilation metabolism and pave the way for the construction of more efficient strains for use in lignocellulosic industrial processes.
Engineering Saccharomyces pastorianus for the co-utilisation of xylose and cellulose from biomass
Microbial cell factories, 2015
Lignocellulosic biomass is a viable source of renewable energy for bioethanol production. For the efficient conversion of biomass into bioethanol, it is essential that sugars from both the cellulose and hemicellulose fractions of lignocellulose be utilised. We describe the development of a recombinant yeast system for the fermentation of cellulose and xylose, the most abundant pentose sugar in the hemicellulose fraction of biomass. The brewer's yeast Saccharomyces pastorianus was chosen as a host as significantly higher recombinant enzyme activities are achieved, when compared to the more commonly used S. cerevisiae. When expressed in S. pastorianus, the Trichoderma reesei xylose oxidoreductase pathway was more efficient at alcohol production from xylose than the xylose isomerase pathway. The alcohol yield was influenced by the concentration of xylose in the medium and was significantly improved by the additional expression of a gene encoding for xylulose kinase. The xylose redu...
Genetic Engineering for Improved Xylose Fermentation by Yeasts
Advances in Biochemical Engineering/Biotechnology, 1999
Xylose utilization is essential for the efficient conversion of lignocellulosic materials to fuels and chemicals. A few yeasts are known to ferment xylose directly to ethanol. However, the rates and yields need to be improved for commercialization. Xylose utilization is repressed by glucose which is usually present in lignocellulosic hydrolysates, so glucose regulation should be altered in order to maximize xylose conversion. Xylose utilization also requires low amounts of oxygen for optimal production. Respiration can reduce ethanol yields, so the role of oxygen must be better understood and respiration must be reduced in order to improve ethanol production. This paper reviews the central pathways for glucose and xylose metabolism, the principal respiratory pathways, the factors determining partitioning of pyruvate between respiration and fermentation, the known genetic mechanisms for glucose and oxygen regulation, and progress to date in improving xylose fermentations by yeasts.
2007
Xylose is the second most abundant sugar present in plant biomass. Plant biomass is the only potential renewable and sustainable source of energy available to mankind at present, especially in the production of transportation fuels. Transportation fuels such as gasoline can be blended with or completely replaced by ethanol produced exclusively from plant biomass, known as bio-ethanol. Bio-ethanol has the potential to reduce carbon emissions and also the dependence on foreign oil (mostly from the Middle East and Africa) for many countries. Bio-ethanol can be produced from both starch and cellulose present in plants, even though cellulosic ethanol has been suggested to be the more feasible option. Lignocellulose can be broken down to cellulose and hemicellulose by the hydrolytic action of acids or enzymes, which can, in turn, be broken down to monosaccharides such as hexoses and pentoses. These simple sugars can then be fermented to ethanol by microorganisms. Among the innumerable microorganisms present in nature, the yeast Saccharomyces cerevisiae is the most efficient ethanol producer on an industrial scale. Its unique ability to efficiently synthesise and tolerate alcohol has made it the 'workhorse' of the alcohol industry. Although S. cerevisiae has arguably a relatively wide substrate utilisation range, it cannot assimilate pentose sugars such as xylose and arabinose. Since xylose constitutes at least one-third of the sugars present in lignocellulose, the ethanol yield from fermentation using S. cerevisiae would be inefficient due to the non-utilisation of this sugar. Thus, several attempts towards xylose fermentation by S. cerevisiae have been made. Through molecular cloning methods, xylose pathway genes from the natural xylose-utilising yeast Pichia stipitis and an anaerobic fungus, Piromyces, have been cloned and expressed separately in various S. cerevisiae strains. However, recombinant S. cerevisiae strains expressing P. stipitis genes encoding xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) had poor growth on xylose and fermented this pentose sugar to xylitol. The main focus of this study was to improve xylose utilisation by a recombinant S. cerevisiae expressing the P. stipitis XYL1 and XYL2 genes under anaerobic fermentation conditions. This has been approached at three different levels: (i) by creating constitutive carbon catabolite repression mutants in the recombinant S. cerevisiae background so that a glucose-like environment is mimicked for the yeast cells during xylose fermentation; (ii) by isolating and cloning a novel xylose reductase gene from the natural xylose-degrading fungus Neurospora crassa through functional complementation in S. cerevisiae; and (iii) by random mutagenesis of a recombinant XYL1 and XYL2 expressing S. cerevisiae strain to create haploid xylose-fermenting mutant that showed an altered product profile after anaerobic xylose fermentation. From the data obtained, it has been shown that it is possible to improve the anaerobic xylose utilisation of recombinant S. cerevisiae to varying degrees using the strategies followed, although ethanol formation appears to be a highly regulated process in the cell. In summary, this work exposits three different methods of improving xylose utilisation under anaerobic conditions through manipulations at the molecular level and metabolic level. The novel S. cerevisiae strains developed and described in this study show improved xylose utilisation. These strains, in turn, could be developed further to encompass other polysaccharide degradation properties to be used in the so-called consolidated bioprocess. BIOGRAPHICAL SKETCH BIOGRAPHICAL SKETCH BIOGRAPHICAL SKETCH BIOGRAPHICAL SKETCH Vasudevan Thanvanthri Gururajan was born on 4 November 1976 in the quaint town of Chidambaram in southern state of Tamil Nadu, India. He has been living in nearby Cuddalore since then, which he considers as hometown. He matriculated in 1994 from Baba Matriculation
Xylose utilisation by recombinant strains of Saccharomyces cerevisiae on different carbon sources
Applied Microbiology and Biotechnology, 1999
Autoselective xylose-utilising strains of Saccharomyces cerevisiae expressing the xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) genes of Pichia stipitis were constructed by replacing the chromosomal FUR1 gene with a disrupted fur1::LEU2 allele. Anaerobic fermentations with 80 g l A1 D-xylose as substrate showed a twofold higher consumption of xylose in complex medium compared to de®ned medium. The xylose consumption rate increased a further threefold when 20 g l A1 D-glucose or ranose was used as cosubstrate together with 50 g l A1 D-xylose. Xylose consumption was higher with ranose as co-substrate than with glucose (85% versus 71%, respectively) after 82 h fermentations. A high initial ethanol concentration and moderate levels of glycerol and acetic acid accompanied glucose as co-substrate, whereas the ethanol concentration gradually increased with ranose as co-substrate with no glycerol and much less acetic acid formation.
FEMS Yeast Research, 2003
Evidence is presented that xylose metabolism in the anaerobic cellulolytic fungus Piromyces sp. E2 proceeds via a xylose isomerase rather than via the xylose reductase/xylitol-dehydrogenase pathway found in xylose-metabolising yeasts. The XylA gene encoding the Piromyces xylose isomerase was functionally expressed in Saccharomyces cerevisiae. Heterologous isomerase activities in cell extracts, assayed at 30 ‡C, were 0.3^1.1 Wmol min 31 (mg protein) 31 , with a K m for xylose of 20 mM. The engineered S. cerevisiae strain grew very slowly on xylose. It co-consumed xylose in aerobic and anaerobic glucose-limited chemostat cultures at rates of 0.33 and 0.73 mmol (g biomass) 31 h 31 , respectively.