The Role of Polymorphonuclear Leukocyte Trafficking in the Perpetuation of Inflammation During Inflammatory Bowel Disease (original) (raw)
Related papers
Journal of Digestive Diseases
Inflammatory bowel diseases (IBD), comprising of ulcerative colitis and Crohn's disease, are inflammatory disorders of the gastrointestinal tract characterized by chronically relapsing mucosal inflammation. Neutrophils, as the effector cells of acute inflammation, have long been reported to play a role in the maintenance of intestinal homeostasis and pathogenesis of IBD. At the early stage of mucosal inflammation in patients with IBD, neutrophils flood into intestinal mucosa, phagocytose pathogenic microbes, and promote mucosal healing and resolution of inflammation. However, large numbers of neutrophils infiltrating in the inflamed mucosa and accumulating in the epithelia cause damage of mucosal architecture, compromised epithelial barrier and production of inflammatory mediators. In this review we discuss the critical roles of neutrophils in modulating innate and adaptive immune responses in intestinal mucosa, and, importantly, clarify the potential roles of neutrophils related to their production of inflammatory mediators, transenthothelial and transepithelial migration into intestinal mucosa, and the underlying mechanisms in regulating mucosal inflammation of IBD. Moreover, we also describe a new subset of neutrophils (i.e., CD177 + neutrophils) and illustrate its protective role in modulating intestinal mucosal immune responses in IBD.
The American Journal of Pathology, 2001
Inflammatory bowel disease (IBD) consisting of ulcerative colitis (UC) and Crohn's (CD) typically displays a waxing and waning course punctuated by disease flares that are characterized by transepithelial migration of neutrophils (PMN) and altered barrier function. Since epithelial barrier function is primarily regulated by the apical most intercellular junction referred to as the tight junction (TJ), our aim was to examine expression of TJ and adherens junction (AJ) proteins in relation to PMN infiltration in mucosal tissue samples from patients with active IBD. Expression of epithelial intercellular TJ proteins (occludin, ZO-1, claudin-1, and JAM) and subjacent AJ (-catenin and E-cadherin) proteins were examined by immunoflourescence/confocal microscopy, immunohistochemistry, and Western blotting. Colonic mucosa from patients with UC revealed dramatic, global down-regulation of the key TJ transmembrane protein occludin in regions of actively transmigrating PMN and in quiescent areas in the biopsy samples. Significant decreases in occludin expression were observed at the protein and mRNA levels by Western and Northern blotting. In contrast, expression of other TJ and AJ proteins such as ZO-1, claudin-1, JAM, -catenin, and E-cadherin were down-regulated only in epithelial cells immediately adjacent to transmigrating PMN. Analysis of inflamed mucosa from Crohn's disease patients mirrored the results obtained with UC patients. No change in TJ and AJ protein expression was observed in colonic epithelium from patients with collagenous colitis or lymphocytic colitis that are respectively characterized by a thickened subepithelial collagen plate and increased intraepithelial lymphocytes. These results suggest that occludin expression is diminished in IBD by mechanisms distinct from those regulating expression of other intercellular junction proteins. We speculate that down-regulation of epithelial occludin may play a role in enhanced paracellular permeability and PMN transmigration that is observed in active inflammatory bowel disease.
Importance of disrupted intestinal barrier in inflammatory bowel diseases
Inflammatory Bowel Diseases, 2011
The current paradigm of inflammatory bowel diseases (IBD), both Crohn's disease (CD) and ulcerative colitis (UC), involves the interaction between environmental factors in the intestinal lumen and inappropriate host immune responses in genetically predisposed individuals. The intestinal mucosal barrier has evolved to maintain a delicate balance between absorbing essential nutrients while preventing the entry and responding to harmful contents. In IBD, disruptions of essential elements of the intestinal barrier lead to permeability defects. These barrier defects exacerbate the underlying immune system, subsequently resulting in tissue damage. The epithelial phenotype in active IBD is very similar in CD and UC. It is characterized by increased secretion of chloride and water, leading to diarrhea, increased permeability via both the transcellular and paracellular routes, and increased apoptosis of epithelial cells. The main cytokine that seems to drive these changes is tumor necrosis factor alpha in CD, whereas interleukin (IL)-13 may be more important in UC. Therapeutic restoration of the mucosal barrier would provide protection and prevent antigenic overload due to intestinal ''leakiness.'' Here we give an overview of the key players of the intestinal mucosal barrier and review the current literature from studies in humans and human systems on mechanisms underlying mucosal barrier dysfunction in IBD. (Inflamm Bowel Dis 2011;17:362-381)
Leukocyte migration in experimental inflammatory bowel disease
Mediators of Inflammation, 1997
EMIGRATION of leukocytes from the circulation into tissue by transendothelial migration, is mediated subsequently by adhesion molecules such as selectins, chemokines and integrins. This multistep paradigm, with multiple molecular choices at each step, provides a diversity in signals. The in ux of neutrophils, monocytes and lymphocytes into in amed tissue is important in the pathogenesis of chronic in ammatory bowel disease. The importance of each of these groups of adhesion molecules in chronic in ammatory bowel disease, either in human disease or in animal models, will be discussed below. Furthermore, the possibilities of blocking these different steps in the process of leukocyte ex travasation in an attempt to prevent further tissue damage, will be taken into account.
The Dual Role of Neutrophils in Inflammatory Bowel Diseases
Journal of Clinical Medicine, 2016
Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are characterised by aberrant immunological responses leading to chronic inflammation without tissue regeneration. These two diseases are considered distinct entities, and there is some evidence that neutrophil behaviour, above all other aspects of immunity, clearly separate them. Neutrophils are the first immune cells recruited to the site of inflammation, and their action is crucial to limit invasion by microorganisms. Furthermore, they play an essential role in proper resolution of inflammation. When these processes are not tightly regulated, they can trigger positive feedback amplification loops that promote neutrophil activation, leading to significant tissue damage and evolution toward chronic disease. Defective chemotaxis, as observed in Crohn's disease, can also contribute to the disease through impaired microbe elimination. In addition, through NET production, neutrophils may be involved in thrombo-embolic events frequently observed in IBD patients. While the role of neutrophils has been studied in different animal models of IBD for many years, their contribution to the pathogenesis of IBD remains poorly understood, and no molecules targeting neutrophils are used and validated for the treatment of these pathologies. Therefore, it is crucial to improve our understanding of their mode of action in these particular conditions in order to provide new therapeutic avenues for IBD.
Molecular Pathophysiology of Epithelial Barrier Dysfunction in Inflammatory Bowel Diseases
Proteomes, 2018
Over the years, the scientific community has explored myriads of theories in search of the etiology and a cure for inflammatory bowel disease (IBD). The cumulative evidence has pointed to the key role of the intestinal barrier and the breakdown of these mechanisms in IBD. More and more scientists and clinicians are embracing the concept of the impaired intestinal epithelial barrier and its role in the pathogenesis and natural history of IBD. However, we are missing a key tool that bridges these scientific insights to clinical practice. Our goal is to overcome the limitations in understanding the molecular physiology of intestinal barrier function and develop a clinical tool to assess and quantify it. This review article explores the proteins in the intestinal tissue that are pivotal in regulating intestinal permeability. Understanding the molecular pathophysiology of impaired intestinal barrier function in IBD may lead to the development of a biochemical method of assessing intestin...
The Laminin Response in Inflammatory Bowel Disease: Protection or Malignancy?
PLoS ONE, 2014
Laminins (LM), basement membrane molecules and mediators of epithelial-stromal communication, are crucial in tissue homeostasis. Inflammatory Bowel Diseases (IBD) are multifactorial pathologies where the microenvironment and in particular LM play an important yet poorly understood role in tissue maintenance, and in cancer progression which represents an inherent risk of IBD. Here we showed first that in human IBD colonic samples and in murine colitis the LMa1 and LMa5 chains are specifically and ectopically overexpressed with a concomitant nuclear p53 accumulation. Linked to this observation, we provided a mechanism showing that p53 induces LMa1 expression at the promoter level by ChIP analysis and this was confirmed by knockdown in cell transfection experiments. To mimic the human disease, we induced colitis and colitis-associated cancer by chemical treatment (DSS) combined or not with a carcinogen (AOM) in transgenic mice overexpressing LMa1 or LMa5 specifically in the intestine. We demonstrated that high LMa1 or LMa5 expression decreased susceptibility towards experimentally DSS-induced colon inflammation as assessed by histological scoring and decrease of pro-inflammatory cytokines. Yet in a pro-oncogenic context, we showed that LM would favor tumorigenesis as revealed by enhanced tumor lesion formation in both LM transgenic mice. Altogether, our results showed that nuclear p53 and associated overexpression of LMa1 and LMa5 protect tissue from inflammation. But in a mutation setting, the same LM molecules favor progression of IBD into colitis-associated cancer. Our transgenic mice represent attractive new models to acquire knowledge about the paradoxical effect of LM that mediate either tissue reparation or cancer according to the microenvironment. In the early phases of IBD, reinforcing basement membrane stability/organization could be a promising therapeutic approach.
The Journal of Cell Biology, 2000
Acute colitis is characterized by a large number of polymorphonuclear leukocytes (PMNLs) migrating across the columnar epithelium in response to inflammatory stimuli. Several of these inflammatory factors have been characterized as proapoptotic inducers for intestinal epithelial cells. Our aim was to elucidate the role of PMNL transmigration in the onset of intestinal epithelial cell apoptosis. We found that PMNL migration, in response to N-formyl-methionyl-leucyl-phenylalanine across monolayers of intestinal epithelial cells (T84), was associated with activation of caspase-2, -3, and -9 and poly(ADP-ribose) polymerase cleavage within epithelial cells. Moreover, dihydrocytochalasin B treatment of T84 cells induced apoptosis with similar characteristics. Although Fas and Fas ligand were expressed on T84 cells and PMNLs, treatment of epithelial cells with an antagonistic anti-Fas antibody failed to prevent apoptosis induced by migrating PMNLs. Owing to the F-actin reorganization accom...