Varidnaviruses in the human gut: a major expansion of the order Vinavirales (original) (raw)
Related papers
Unique genomic features of crAss-like phages, the dominant component of the human gut virome
2020
CrAssphage is the most abundant virus identified in the human gut virome and the founding member of a large group of bacteriophages that infect bacteria of the phylum Bacteroidetes and have been discovered by metagenomics of both animal-associated and environmental habitats. By analysis of circular contigs from human gut microbiomes, we identified nearly 600 genomes of crAss-like phages. Phylogenetic analysis of conserved genes demonstrates the monophyly of crAss-like phages, which can be expected to become a new order of viruses, and of 5 distinct branches, likely, families within that order. Two of these putative families have not been identified previously. The phages in one of these groups have large genomes (145-192 kilobases) and contain an unprecedented high density of self-splicing introns and inteins. Many crAss-like phages encode suppressor tRNAs that enable readthrough of UGA or UAG stop-codons, mostly, in late phage genes, which could represent a distinct anti-defense st...
Nature Communications, 2021
CrAssphage is the most abundant human-associated virus and the founding member of a large group of bacteriophages, discovered in animal-associated and environmental metagenomes, that infect bacteria of the phylum Bacteroidetes. We analyze 4907 Circular Metagenome Assembled Genomes (cMAGs) of putative viruses from human gut microbiomes and identify nearly 600 genomes of crAss-like phages that account for nearly 87% of the DNA reads mapped to these cMAGs. Phylogenetic analysis of conserved genes demonstrates the monophyly of crAss-like phages, a putative virus order, and of 5 branches, potential families within that order, two of which have not been identified previously. The phage genomes in one of these families are almost twofold larger than the crAssphage genome (145-192 kilobases), with high density of self-splicing introns and inteins. Many crAss-like phages encode suppressor tRNAs that enable read-through of UGA or UAG stop-codons, mostly, in late phage genes. A distinct featur...
Thousands of previously unknown phages discovered in whole-community human gut metagenomes
Microbiome
Background Double-stranded DNA bacteriophages (dsDNA phages) play pivotal roles in structuring human gut microbiomes; yet, the gut virome is far from being fully characterized, and additional groups of phages, including highly abundant ones, continue to be discovered by metagenome mining. A multilevel framework for taxonomic classification of viruses was recently adopted, facilitating the classification of phages into evolutionary informative taxonomic units based on hallmark genes. Together with advanced approaches for sequence assembly and powerful methods of sequence analysis, this revised framework offers the opportunity to discover and classify unknown phage taxa in the human gut. Results A search of human gut metagenomes for circular contigs encoding phage hallmark genes resulted in the identification of 3738 apparently complete phage genomes that represent 451 putative genera. Several of these phage genera are only distantly related to previously identified phages and are lik...
The human gut virome: form and function
Emerging Topics in Life Sciences, 2017
Advances in next-generation sequencing technologies and the application of metagenomic approaches have fuelled an exponential increase in our understanding of the human gut microbiome. These approaches are now also illuminating features of the diverse and abundant collection of viruses (termed the virome) subsisting with the microbial ecosystems residing within the human holobiont. Here, we focus on the current and emerging knowledge of the human gut virome, in particular on viruses infecting bacteria (bacteriophage or phage), which are a dominant component of this viral community. We summarise current insights regarding the form and function of this ‘human gut phageome’ and highlight promising avenues for future research. In doing so, we discuss the potential for phage to drive ecological functioning and evolutionary change within this important microbial ecosystem, their contribution to modulation of host–microbiome interactions and stability of the community as a whole, as well a...
PLoS ONE, 2014
Background: Vibrio vulnificus is an important pathogen which can cause serious infections in humans. Yet, there is limited knowledge on its virulence factors and the question whether temperate phages might be involved in pathogenicity, as is the case with V. cholerae. Thus far, only two phages (SSP002 and VvAW1) infecting V. vulnificus have been genetically characterized. These phages were isolated from the environment and are not related to Vibrio cholerae phages. The lack of information on temperate V. vulnificus phages prompted us to isolate those phages from lysogenic strains and to compare them with phages of other Vibrio species.
Bacteriophage vB_EcoM_FV3: a new member of “rV5-like viruses”
Archives of Virology, 2012
A proposed new genus of the family Myoviridae, ''rV5-like viruses'', includes two lytic bacteriophages: Escherichia coli O157: H7-specific bacteriophage rV5 and Salmonella phage PVP-SE1. Here, we present basic properties and genomic characterization of a novel rV5-like phage, vB_EcoM_FV3, which infects E. coli K-12-derived laboratory strains and replicates at high temperature (up to 47°C). The 136,947-bp genome of vB_EcoM_FV3 contains 218 open reading frames and encodes 5 tRNAs. The genomic content and organization of vB_EcoM_FV3 is more similar to that of rV5 than to PVP-SE1, but all three phages share similar morphological characteristics and form a homogeneous phage group.
S2.0 S0092867401006377 main Phage Genomics: Small Is Beautiful
genes. These genetic functions can be squeezed into a Nestec Ltd. 20 kb DNA genome as demonstrated by c2 Siphovirus Vers-chez-les-Blanc and φ29 Podovirus. As the genome size increases, the CH-1000 Lausanne 26 virion morphology gets more complicated, and the Switzerland phage interferes more with cellular activities. However, 2 Pittsburgh Bacteriophage Institute and we are far from understanding this in detail. Despite Department of Biological Sciences decades of research, only about 130 from the estimated University of Pittsburgh 230 genes of Myovirus T4 have assigned functions. Pittsburgh, Pennsylvania 15260 Tailed phages have been described in many phylogenetic divisions of Eubacteria. Curiously, viruses from All the world's a phage. one branch of Archaea (Euryarchaeota) resemble tailed -W. Shakespeare phages in morphology and genome organization (Pfister et al., 1998). There is also evidence for shared protein There are