Unscheduled epigenetic modifications cause genome instability and sterility through aberrant R-loops following starvation (original) (raw)

AMPK blocks chromatin activation and consequent R-loop formation to protect genome stability following acute starvation

2021

During periods of starvation organisms must modify both gene expression and metabolic pathways to adjust to the energy stress. We previously reported that C. elegans that lack AMPK have transgenerational reproductive defects that result from abnormally elevated H3K4me3 levels in the germ line following recovery from acute starvation1. Here we show that H3K4me3 is dramatically increased at promoters, driving aberrant transcription elongation that results in the accumulation of R-loops in the starved AMPK mutants. DRIP-seq analysis demonstrated that a significant proportion of the genome was affected by R-loop formation with a dramatic expansion in the number of R-loops at numerous loci, most pronounced at the promoter-TSS regions of genes in the starved AMPK mutants. The R-loops are transmissible into subsequent generations, likely contributing to the transgenerational reproductive defects typical of these mutants following starvation. Strikingly, AMPK null germ lines show considerab...

AMPK blocks starvation-inducible transgenerational defects in Caenorhabditis elegans

Proceedings of the National Academy of Sciences of the United States of America, 2017

Life history events, such as traumatic stress, illness, or starvation, can influence us through molecular changes that are recorded in a pattern of characteristic chromatin modifications. These modifications are often associated with adaptive adjustments in gene expression that can persist throughout the lifetime of the organism, or even span multiple generations. Although these adaptations may confer some selective advantage, if they are not appropriately regulated they can also be maladaptive in a context-dependent manner. We show here that during periods of acute starvation in Caenorhabditis elegans larvae, the master metabolic regulator AMP-activated protein kinase (AMPK) plays a critical role in blocking modifications to the chromatin landscape. This ensures that gene expression remains inactive in the germ-line precursors during adverse conditions. In its absence, critical chromatin modifications occur in the primordial germ cells (PGCs) of emergent starved L1 larvae that corr...

H3K9me2 protects lifespan against the transgenerational burden of germline transcription in C. elegans

During active transcription, the COMPASS complex methylates histone H3 at lysine 4 (H3K4me). In Caenorhabditis elegans, mutations in COMPASS subunits, including WDR-5, extend lifespan and enable the inheritance of increased lifespan in wild-type descendants. Here we show that the increased lifespan of wdr-5 mutants is itself a transgenerational trait that manifests after eighteen generations and correlates with changes in the heterochromatin factor H3K9me2. Additionally, we find that wdr-5 mutant longevity and its inheritance requires the H3K9me2 methyltransferase MET-2 and can be recapitulated by a mutation in the putative H3K9me2 demethylase JHDM-1. These data suggest that lifespan is constrained by reduced H3K9me2 due to transcription-coupled H3K4me. wdr-5 mutants alleviate this burden, extending lifespan and enabling the inheritance of increased lifespan. Thus, H3K9me2 functions in the epigenetic establishment and inheritance of a complex trait. Based on this model, we propose t...

Gene expression profiling of oxidative stress response of C. elegans aging defective AMPK mutants using massively parallel transcriptome sequencing

BMC Research Notes, 2011

Background: A strong association between stress resistance and longevity in multicellular organisms has been established as many mutations that extend lifespan also show increased resistance to stress. AAK-2, the C. elegans homolog of an alpha subunit of AMP-activated protein kinase (AMPK) is an intracellular fuel sensor that regulates cellular energy homeostasis and functions in stress resistance and lifespan extension. Findings: Here, we investigated global transcriptional responses of aak-2 mutants to oxidative stress and in turn identified potential downstream targets of AAK-2 involved in stress resistance in C. elegans. We employed massively parallel Illumina sequencing technology and performed comprehensive comparative transcriptome analysis. Specifically, we compared the transcriptomes of aak-2 and wild type animals under normal conditions and conditions of induced oxidative stress. This research has presented a snapshot of genome-wide transcriptional activities that take place in C. elegans in response to oxidative stress both in the presence and absence of AAK-2. Conclusions: The analysis presented in this study has enabled us to identify potential genes involved in stress resistance that may be either directly or indirectly under the control of AAK-2. Furthermore, we have extended our current knowledge of general defense responses of C. elegans against oxidative stress supporting the function for AAK-2 in inhibition of biosynthetic processes, especially lipid synthesis, under oxidative stress and transcriptional regulation of genes involved in reproductive processes.

C. elegans AMPKs promote survival and arrest germline development during nutrient stress

Biology open, 2012

Mechanisms controlling development, growth, and metabolism are coordinated in response to changes in environmental conditions, enhancing the likelihood of survival to reproductive maturity. Much remains to be learned about the molecular basis underlying environmental influences on these processes. C. elegans larvae enter a developmentally dormant state called L1 diapause when hatched into nutrient-poor conditions. The nematode pten homologue daf-18 is essential for maintenance of survival and germline stem cell quiescence during this period (Fukuyama et al., 2006; Sigmond et al., 2008), but the details of the signaling network(s) in which it functions remain to be elucidated. Here, we report that animals lacking both aak-1 and aak-2, which encode the two catalytic α subunits of AMP-activated protein kinase (AMPK), show reduced viability and failure to maintain mitotic quiescence in germline stem cells during L1 diapause. Furthermore, failure to arrest germline proliferation has a lo...

Trans-generational epigenetic regulation of C. elegans primordial germ cells

Epigenetics & Chromatin, 2010

Background The processes through which the germline maintains its continuity across generations has long been the focus of biological research. Recent studies have suggested that germline continuity can involve epigenetic regulation, including regulation of histone modifications. However, it is not clear how histone modifications generated in one generation can influence the transcription program and development of germ cells of the next. Results We show that the histone H3K36 methyltransferase maternal effect sterile (MES)-4 is an epigenetic modifier that prevents aberrant transcription activity in Caenorhabditis elegans primordial germ cells (PGCs). In mes-4 mutant PGCs, RNA Pol II activation is abnormally regulated and the PGCs degenerate. Genetic and genomewide analyses of MES-4-mediated H3K36 methylation suggest that MES-4 activity can operate independently of ongoing transcription, and may be predominantly responsible for maintenance methylation of H3K36 in germline-expressed ...

Trans-generational epigenetic regulation in C. elegans primordial germ cells

Developmental Biology, 2010

Background: The processes through which the germline maintains its continuity across generations has long been the focus of biological research. Recent studies have suggested that germline continuity can involve epigenetic regulation, including regulation of histone modifications. However, it is not clear how histone modifications generated in one generation can influence the transcription program and development of germ cells of the next. Results: We show that the histone H3K36 methyltransferase maternal effect sterile (MES)-4 is an epigenetic modifier that prevents aberrant transcription activity in Caenorhabditis elegans primordial germ cells (PGCs). In mes-4 mutant PGCs, RNA Pol II activation is abnormally regulated and the PGCs degenerate. Genetic and genomewide analyses of MES-4-mediated H3K36 methylation suggest that MES-4 activity can operate independently of ongoing transcription, and may be predominantly responsible for maintenance methylation of H3K36 in germline-expressed loci. Conclusions: Our data suggest a model in which MES-4 helps to maintain an 'epigenetic memory' of transcription that occurred in germ cells of previous generations, and that MES-4 and its epigenetic product are essential for normal germ cell development.

Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans

Nature, 2011

Chromatin modifiers regulate lifespan in several organisms, raising the question of whether changes in chromatin states in the parental generation could be incompletely reprogrammed in the next generation and thereby affect the lifespan of descendents. The histone H3 lysine 4 trimethylation (H3K4me3) complex composed of ASH-2, WDR-5, and the histone methyltransferase SET-2 regulates C. elegans lifespan. Here we show that deficiencies in the H3K4me3 chromatin modifiers ASH-2, WDR-5, or SET-2 in the parental generation extend the lifespan of descendents up until the third generation. The transgenerational inheritance of lifespan extension by members of the ASH-2 complex is dependent on the H3K4me3 demethylase RBR-2, and requires the presence of a functioning germline in the descendents. Transgenerational inheritance of lifespan is specific for the H3K4me3 methylation complex and is associated with epigenetic changes in gene expression. Thus, manipulation of specific chromatin modifiers only in parents can induce an epigenetic memory of longevity in descendents.

Caenorhabditis elegans Heterochromatin protein 1 (HPL-2) links developmental plasticity, longevity and lipid metabolism

Genome Biology, 2011

Background: Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. Results: We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up-and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-β signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers.