Microbial adaptive evolution (original) (raw)

Rapid Evolution of Novel Traits in Microorganisms

Applied and Environmental Microbiology, 2001

The use of natural microorganisms in biotransformations is frequently constrained by their limited tolerance to the high concentrations of metabolites and solvents required for effective industrial production. In many cases, more robust strains have to be generated by random mutagenesis and selection. This process of directed evolution can be accelerated in mutator strains, which carry defects in one or more of their DNA repair genes. However, in order to use mutator strains, it is essential to restore the normal low mutation rate of the selected organisms immediately after selection to prevent the accumulation of undesirable spontaneous mutations. To enable this process, we constructed temperature-sensitive plasmids that temporarily increase the mutation frequency of their hosts by 20-to 4,000-fold. Under appropriate selection pressure, microorganisms transformed with mutator plasmids can be quickly evolved to exhibit new, complex traits. By using this approach, we were able to increase the tolerance of three bacterial strains to dimethylformamide by 10 to 20 g/liter during only two subsequent transfers. Subsequently, the evolved strains were returned to their normal low mutation rate by curing the cells of the mutator plasmids. Our results demonstrate a new and efficient method for rapid strain improvement based on in vivo mutagenesis.

The study of microbial adaptation by long-term experimental evolution

2006

The process of becoming a pathogen necessarily involves evolutionary adaptation to a novel host environment. The molecular mechanisms of virulence that differentiate pathogenic from commensal organisms—including secretion systems, toxins, adhesion and invasion strategies, and the like—are often expressed with exquisite precision, and seem to be obvious adaptations.

Mutation, Selection and Genetic Interactions in Bacteria

Encyclopedia of Life Sciences, 2001

Mutation is the ultimate source of genetic variation. The rate at which new mutations typically occur, their effects on fitness and the strength and type of genetic interactions between different mutations are key for understanding the evolution of any population. Estimates of these parameters in organisms such as bacteria will have a profound impact on our understanding of their biology, diversity, rate of speciation and in our health. Experimental evolution with bacteria presents us with the opportunity to directly measure these parameters and to test theoretical predictions about the genetic basis of adaptive evolution. Evidence has been increasing to support the view that bacterial adaptation can be extraordinary fast, that competition between different adaptive mutations may be pervasive in bacterial populations and that epistasis is very common and possibly biased towards antagonism in bacteria.

Identification of mutations in evolved bacterial genomes

Methods in molecular biology (Clifton, N.J.), 2013

Directed laboratory evolution is a common technique to obtain an evolved bacteria strain with a desired phenotype. This technique is especially useful as a supplement to rational engineering for complex phenotypes such as increased biocatalyst tolerance to toxic compounds. However, reverse engineering efforts are required in order to identify the mutations that occurred, including single nucleotide polymorphisms (SNPs), insertions/deletions (indels), duplications, and rearrangements. In this protocol, we describe the steps to (1) obtain and sequence the genomic DNA, (2) process and analyze the genomic DNA sequence data, and (3) verify the mutations by Sanger resequencing.

Evolving Bacterial Fitness with an Expanded Genetic Code

Scientific Reports

Since the fixation of the genetic code, evolution has largely been confined to 20 proteinogenic amino acids. The development of orthogonal translation systems that allow for the codon-specific incorporation of noncanonical amino acids may provide a means to expand the code, but these translation systems cannot be simply superimposed on cells that have spent billions of years optimizing their genomes with the canonical code. We have therefore carried out directed evolution experiments with an orthogonal translation system that inserts 3-nitro-L-tyrosine across from amber codons, creating a 21 amino acid genetic code in which the amber stop codon ambiguously encodes either 3-nitro-L-tyrosine or stop. The 21 amino acid code is enforced through the inclusion of an addicted, essential gene, a beta-lactamase dependent upon 3-nitro-L-tyrosine incorporation. After 2000 generations of directed evolution, the fitness deficit of the original strain was largely repaired through mutations that limited the toxicity of the noncanonical. While the evolved lineages had not resolved the ambiguous coding of the amber codon, the improvements in fitness allowed new amber codons to populate protein coding sequences.

Bacterial genome evolution within a clonal population: from in vitro investigations to in vivo observations

Future Microbiology, 2013

Bacteria are faced with a diversity of environmental stresses that include high salt concentrations, heavy metals and pH fluctuations. Adaptation to resist such stresses is a complex phenomenon that involves global pathways and simultaneous acquisition of multiple unrelated properties. During the last 3 years, the development of new technologies in the field of molecular biology has led to numerous fundamental and quantitative in vitro and in vivo evolutionary studies that have improved our understanding of the principles underlying bacterial adaptations, and helped us develop strategies to cope with the health burden of bacterial virulence. In this review, the authors discuss the evolution of bacteria in the laboratory and in human patients. Keywords n bacterial adaptation n genome evolution n genome plasticity n metabolism n virulence

Genome evolution and adaptation in a long-term experiment with Escherichia coli

Nature, 2009

The relationship between rates of genomic evolution and organismal adaptation remains uncertain, despite considerable interest. The feasibility of obtaining genome sequences from experimentally evolving populations offers the opportunity to investigate this relationship with new precision. Here we sequence genomes sampled through 40,000 generations from a laboratory population of Escherichia coli. Although adaptation decelerated sharply, genomic evolution was nearly constant for 20,000 generations. Such clock-like regularity is usually viewed as the signature of neutral evolution, but several lines of evidence indicate that almost all of these mutations were beneficial. This same population later evolved an elevated mutation rate and accumulated hundreds of additional mutations dominated by a neutral signature. Thus, the coupling between genomic and adaptive evolution is complex and can be counterintuitive even in a constant environment. In particular, beneficial substitutions were surprisingly uniform over time, whereas neutral substitutions were highly variable.

Microbial experimental evolution

American Journal of Physiology Regulatory Integrative and Comparative Physiology, 2009

Microbes have been widely used in experimental evolutionary studies because they possess a variety of valuable traits that facilitate large-scale experimentation. Many replicated populations can be cultured in the laboratory simultaneously along with appropriate controls. Short generation times and large population sizes make microbes ideal experimental subjects, ensuring that many spontaneous mutations occur every generation and that adaptive variants can spread rapidly through a population. Another highly useful experimental feature is the ability to preserve and store ancestral and evolutionarily derived clones. These can be revived in parallel to allow the direct measurement of the competitive fitness of a descendant compared with its ancestor. The extent of adaptation can thereby be measured quantitatively and compared statistically by direct competition among derived groups and with the ancestor. Thus, fitness and adaptation need not be matters of qualitative speculation, but are quantitatively measurable variables in these systems. Replication allows the quantification of heterogeneity in responses to imposed selection and thereby statistical distinction between changes that are systematic responses to the selective regimen and those that are specific to individual populations.