Proresolution Mediators and Receptors: Novel Drug Targets for Enhancing Pharmacological Armamentarium against Periodontal Inflammation (original) (raw)
Related papers
Emerging Concepts in the Resolution of Periodontal Inflammation: A Role for Resolvin E1
Frontiers in immunology, 2017
Inflammatory response is a protective biological process intended to eliminate the harmful effect of the insulting influx. Resolution of inflammation constitutes an active sequence of overlapping events mediated by specialized proresolving mediators, such as lipoxins, resolvins, protectins, and maresins, which originate from the enzymatic conversion of polyunsaturated fatty acids (PUFAs). An unresolved acute inflammatory response results in chronic inflammation, which is a leading cause of several common pathological conditions. Periodontitis is a biofilm-induced chronic inflammatory disease, which results in loss of periodontal connective tissue and alveolar bone support around the teeth, leading to tooth exfoliation. An inadequate proresolving host response may constitute a mechanism explaining the pathogenesis of periodontal disease. An emerging body of clinical and experimental evidence has focused on the underlying molecular mechanisms of resolvins and particularly Resolvin E1 ...
2017
Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Specialized pro-resolving lipid mediators: A future for conventional endodontics-A review
IP Indian Journal of Conservative and Endodontics
Human dental pulp is a highly dynamic tissue that plays major roles in the defense against pathogens and during tissue injury. However, the efficiency of these mechanisms during dental pulp inflammation (pulpitis) varies due to anatomical and physiological restrictions. Uncontrolled progressive unresolved inflammation can lead to pulp tissue necrosis and subsequent apical periodontitis or it can develop into chronic inflammation and become a silent killer causing bone destruction. Considering the cause & effect model, the decision to perform pulp extirpation and endodontic treatment is justifiable only by the lack of therapeutic tools that limit the immune/inflammatory process. The resolution of acute inflammation is necessary to avoid the development of chronic inflammation and to promote repair or regeneration. This active process is orchestrated by Specialized Pro-resolving lipid Mediators (SPMs), which include several families of distinct local mediators (lipoxins, resolvins, pr...
Resolvin D1 protects periodontal ligament
AJP: Cell Physiology, 2013
tion agonists are endogenous mediators that drive inflammation to homeostasis. We earlier demonstrated in vivo activity of resolvins and lipoxins on regenerative periodontal wound healing. The goal of this study was to determine the impact of resolvin D1 (RvD1) on the function of human periodontal ligament (PDL) fibroblasts, which are critical for wound healing during regeneration of the soft and hard tissues around teeth. Primary cells were cultured from biopsies obtained from three individuals free of periodontal diseases. Peripheral blood mononuclear cells were isolated by density gradient centrifugation from whole blood of healthy volunteers. PGE2, leukotriene B4 (LTB4), and lipoxin A4 (LXA4) in culture supernatants were measured by ELISA. The direct impact of RvD1 on PDL fibroblast proliferation was measured and wound closure was analyzed in vitro using a fibroblast culture "scratch assay." PDL fibroblast function in response to RvD1 was further characterized by basic FGF production by ELISA. IL-1 and TNF-␣ enhanced the production of PGE2. Treatment of PDL cells and monocytes with 0.1-10 ng/ml RvD1 (0.27-27 M) reduced cytokine induced production of PGE 2 and upregulated LXA4 production by both PDL cells and monocytes. RvD1 significantly enhanced PDL fibroblast proliferation and wound closure as well as basic FGF release. The results demonstrate that anti-inflammatory and proresolution actions of RvD1 with upregulation of arachidonic acid-derived endogenous resolution pathways (LXA 4) and suggest resolution pathway synergy establishing a novel mechanism for the proresolution activity of the -3 docosahexaenoic acid-derived resolution agonist RvD1.
PLoS ONE, 2013
Aggressive periodontitis (AgP) is a rapidly progressing type of periodontal disease in otherwise healthy individuals which causes destruction of the supporting tissues of the teeth. The disease is initiated by pathogenic bacteria in the dental biofilm, and the severity of inflammation and attachment loss varies with the host response. Recently, there has been an increased interest in determining the role of lipid mediators in inflammatory events and the concept of pro-inflammatory and pro-resolution lipid mediators has been brought into focus also in periodontal disease. The present study aimed to determine the profile of omega-3 or n3-as well as omega-6 or n6-polyunsaturated fatty acids (PUFAs) and PUFAmetabolites of linoleic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in gingival crevicular fluid (GCF), saliva and serum in AgP patients and healthy controls. In total, 60 selected n3-and n6-PUFAs and various PUFA metabolites were measured using high performance liquid chromatography-tandem electrospray ionisation mass spectrometry (HPLC-ESI-MS-MS). Of these, 51 could be quantified in this study. The concentrations of the majority were low in saliva samples compared with serum and GCF, but were mainly higher in AgP patients compared with healthy controls in all three kinds of sample. Ratios of n3-to n6-PUFAs (DHA + EPA)/AA were significantly lower in the GCF of AgP patients than in the healthy controls. Furthermore, various ratios of the direct precursors of the pro-resolution lipid mediators (precursors of resolvins and protectins) were calculated against the precursors of mainly pro-inflammatory lipid mediators. These ratios were mainly lower in GCF and saliva of AgP patients, compared with healthy controls, but only reached significance in GCF (P,0.05). To conclude, the ratios of precursors of pro-resolution/pro-inflammatory lipid mediators seem to be more relevant for describing the disease status of AgP than the concentration of specific lipid mediators.
Impaired Phagocytosis in Localized Aggressive Periodontitis: Rescue by Resolvin E1
PLoS ONE, 2011
Resolution of inflammation is an active temporally orchestrated process demonstrated by the biosynthesis of novel proresolving mediators. Dysregulation of resolution pathways may underlie prevalent human inflammatory diseases such as cardiovascular diseases and periodontitis. Localized Aggressive Periodontitis (LAP) is an early onset, rapidly progressing form of inflammatory periodontal disease. Here, we report increased surface P-selectin on circulating LAP platelets, and elevated integrin (CD18) surface expression on neutrophils and monocytes compared to healthy, asymptomatic controls. Significantly more platelet-neutrophil and platelet-monocyte aggregates were identified in circulating whole blood of LAP patients compared with asymptomatic controls. LAP whole blood generates increased pro-inflammatory LTB4 with addition of divalent cation ionophore A23187 (5 mM) and significantly less, 15-HETE, 12-HETE, 14-HDHA, and lipoxin A 4. Macrophages from LAP subjects exhibit reduced phagocytosis. The pro-resolving lipid mediator, Resolvin E1 (0.1-100 nM), rescues the impaired phagocytic activity in LAP macrophages. These abnormalities suggest compromised resolution pathways, which may contribute to persistent inflammation resulting in establishment of a chronic inflammatory lesion and periodontal disease progression.
Resolution of Inflammation in Periodontitis: A Comprehensive Review
Journal of Advanced Zoology
Inflammation, a natural defence mechanism against injury or infection, can become problematic when it fails to resolve, as observed in conditions like periodontitisThis review explores how inflammation is resolved in periodontitis and seeks potential treatments for this chronic condition, which damages the periodontium, including the gingival tissue, periodontal ligament, and alveolar bone. The pathogenesis of this disease is initiated by the inflammatory response triggered by resident leukocytes and endothelial cells upon exposure to bacterial biofilms, resulting in vasodilation and immune cell recruitment. The review stresses the importance of researching targeted approaches for periodontitis treatment, such as inducing neutrophil apoptosis, shifting from M1 to M2 macrophages, and exploring M2-based tissue engineering. Additionally, investigating lymphangiogenesis and Treg cell recruitment at the inflammation site offers promising avenues. In conclusion, further studies are needed...
RvE1 protects from local inflammation and osteoclast-mediated bone destruction in periodontitis
The FASEB Journal, 2005
Periodontitis is a well-appreciated example of leukocyte-mediated bone loss and inflammation that has pathogenic features similar to those observed in other inflammatory diseases such as arthritis. Resolvins are a new family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammatory signals. Because it is now increasingly apparent that local inflammation plays a critical role in many diseases, including cardiovascular disease, atherosclerosis, and asthma, experiments were undertaken to evaluate the actions of the newly described EPA-derived Resolvin E1 (RvE1) in regulation of neutrophil tissue destruction and resolution of inflammation. The actions of an aspirin-triggered lipoxin (LX) analog and RvE1 in a human disease, localized aggressive periodontitis (LAP), were determined. Results indicate that neutrophils from LAP are refractory to anti-inflammatory molecules of the LX series, whereas LAP neutrophils respond to RvE1. In addition, RvE1 specifically binds to human neutrophils at a site that is functionally distinct from the LX receptor. Consistent with these potent actions, topical application of RvE1 in rabbit periodontitis conferred dramatic protection against inflammation induced tissue and bone loss associated with periodontitis.