Odor Encoding as an Active, Dynamical Process: Experiments, Computation, and Theory (original) (raw)
Related papers
EARLY EVENTS IN OLFACTORY PROCESSING
Annual Review of Neuroscience, 2006
Olfactory space has a higher dimensionality than does any other class of sensory stimuli, and the olfactory system receives input from an unusually large number of unique information channels. This suggests that aspects of olfactory processing may differ fundamentally from processing in other sensory modalities. This review summarizes current understanding of early events in olfactory processing. We focus on how odors are encoded by the activity of primary olfactory receptor neurons, how odor codes may be transformed in the olfactory bulb, and what relevance these codes may have for downstream neurons in higher brain centers. Recent findings in synaptic physiology, neural coding, and psychophysics are discussed, with reference to both vertebrate and insect model systems. 163 Annu. Rev. Neurosci. 2006.29:163-201. Downloaded from arjournals.annualreviews.org by HARVARD UNIVERSITY on 07/17/06. For personal use only.
Olfactory signal coding in an odor background
Biosystems, 2015
Insects communicating with pheromones are confronted with an olfactory environment featuring a diversity of volatile organic compounds from plant origin. These volatiles constitute a rich and fluctuant background from which the information carried by the pheromone signal must be extracted. Thus, the pheromone receptor neurons must encode into spike trains the quality, intensity and temporal characteristics of the signal that are determinant to the recognition and localization of a conspecific female. We recorded and analyzed the responses of the pheromone olfactory receptor neurons of male moths to sex pheromone in different odor background conditions. We show that in spite of the narrow chemical tuning of the pheromone receptor neurons, the sensory input can be altered by odorant background.
Information processing in the olfactory systems of insects and vertebrates
Seminars in Cell & Developmental Biology, 2006
Insects and vertebrates separately evolved remarkably similar mechanisms to process olfactory information. Odors are sampled by huge numbers of receptor neurons, which converge type-wise upon a much smaller number of principal neurons within glomeruli. There, odor information is transformed by inhibitory interneuron-mediated, cross-glomerular circuit interactions that impose slow temporal structures and fast oscillations onto the firing patterns of principal neurons. The transformations appear to improve signal-to-noise characteristics, define odor categories, achieve precise odor identification, extract invariant features, and begin the process of sparsening the neural representations of odors for efficient discrimination, memorization, and recognition.
Effect of Circuit Structure on Odor Representation in the Insect Olfactory System
eneuro, 2020
In neuroscience, the structure of a circuit has often been used to intuit function-an inversion of Louis Kahn's famous dictum, "Form follows function" (Kristan and Katz, 2006). However, different brain networks may use different network architectures to solve the same problem. The olfactory circuits of two insects, the locust, Schistocerca americana, and the fruit fly, Drosophila melanogaster, serve the same function-to identify and discriminate odors. The neural circuitry that achieves this shows marked structural differences. Projection neurons (PNs) in the antennal lobe innervate Kenyon cells (KCs) of the mushroom body. In locust, each KC receives inputs from ;50% of PNs, a scheme that maximizes the difference between inputs to any two of ;50,000 KCs. In contrast, in Drosophila, this number is only 5% and appears suboptimal. Using a computational model of the olfactory system, we show that the activity of KCs is sufficiently high-dimensional that it can separate similar odors regardless of the divergence of PN-KC connections. However, when temporal patterning encodes odor attributes, dense connectivity outperforms sparse connections. Increased separability comes at the cost of reliability. The disadvantage of sparse connectivity can be mitigated by incorporating other aspects of circuit architecture seen in Drosophila. Our simulations predict that Drosophila and locust circuits lie at different ends of a continuum where the Drosophila gives up on the ability to resolve similar odors to generalize across varying environments, while the locust separates odor representations but risks misclassifying noisy variants of the same odor.
Gain modulation and odor concentration invariance in early olfactory networks
2019
A conserved principle of the olfactory system, in most, if not all animals, is that each olfactory receptor interacts with different odorant molecules and each odorant molecule interacts with different olfactory receptors. This broad receptive field of the receptors constitutes the basis of a combinatorial code that allows animals to discriminate many more odorants than the actual number of receptor types that they express. A drawback is that high odorant concentrations recruit lower affinity receptors, which can give rise to the perception of qualitatively different odors. Here we addressed the contribution that early signal-processing in the honey bee antennal lobe does to keep odor representation stable across concentrations. We describe the contribution that GABA-A and GABA-B receptors-dependent-inhibition plays in terms of the amplitude and temporal profiles of the signals that convey odor information from the antennal lobes to the mushroom bodies. GABA reduces the amplitude of...
Temporal Representations of Odors in an Olfactory Network
The Journal of Neuroscience, 1996
The responses of projection neurons in the antennal lobe of the locust brain (the functional analog of mitral–tufted cells in the vertebrate olfactory bulb) to natural blends and simple odors were studied with multiple intra- and extracellular recordingsin vivo. Individual odors evoked complex temporal response patterns in many neurons. These patterns differed across odors for a given neuron and across neurons for a given odor, but were stable for each neuron over repeated presentations (separated by seconds to minutes) of the same odor. The response of individual neurons to an odor was superimposed on an odor-specific coherent oscillatory population activity. Each neuron usually participated in the coherent oscillations during one or more specific epochs of the ensemble activity. These epochs of phase locking were reliable for each neuron over tens of repeated presentations of one odor. The timing of these epochs of synchronization differed across neurons and odors. Correlated acti...
Coding and transformations in the olfactory system
Annual review of neuroscience, 2014
How is sensory information represented in the brain? A long-standing debate in neural coding is whether and how timing of spikes conveys information to downstream neurons. Although we know that neurons in the olfactory bulb (OB) exhibit rich temporal dynamics, the functional relevance of temporal coding remains hotly debated. Recent recording experiments in awake behaving animals have elucidated highly organized temporal structures of activity in the OB. In addition, the analysis of neural circuits in the piriform cortex (PC) demonstrated the importance of not only OB afferent inputs but also intrinsic PC neural circuits in shaping odor responses. Furthermore, new experiments involving stimulation of the OB with specific temporal patterns allowed for testing the relevance of temporal codes. Together, these studies suggest that the relative timing of neuronal activity in the OB conveys odor information and that neural circuits in the PC possess various mechanisms to decode temporal p...