Conditional Extragradient Algorithms for Solving Constrained Variational Inequalities (original) (raw)
Abstract
In this paper, we generalize the classical extragradient algorithm for solving variational inequality problems by utilizing non-null normal vectors of the feasible set. In particular, conceptual algorithms are proposed with two different linesearches. We then establish convergence results for these algorithms under mild assumptions. Our study suggests that non-null normal vectors may significantly improve convergence if chosen appropriately.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (41)
- Auslender, A., Teboulle, M.: Interior projection-like methods for monotone variational inequalities. Math. Program. 104 (2005) 39-68.
- Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38 (1996) 367-426.
- Bauschke, H.H., Combettes, Patrick L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011).
- Bello Cruz, J.Y., Díaz Millán, R.: A direct splitting method for nonsmooth variational inequalities. J. Optim. Theory Appl. 161 (2014) 728-737.
- Bello Cruz, J.Y., Díaz Millán, R.: A variant of Forward-Backward splitting method for the sum of two monotone operators with a new search strategy. Optimization 64 (2015) 1471-1486.
- Bello Cruz, J.Y., Díaz Millán, R.: A relaxed-projection splitting algorithm for variational inequalities in Hilbert spaces. J. Global Optim. 65 (2016) 597-614.
- Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent direct method for monotone variational inequal- ities in Hilbert spaces. Numer. Funct. Anal. Optim. 30 (2009) 23-36.
- Bello Cruz, J.Y., Iusem, A.N.: Convergence of direct methods for paramonotone variational inequali- ties. Comput. Optim. Appl. 46 (2010) 247-263.
- Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent method for nonsmooth convex minimization in Hilbert spaces. Numer. Funct. Anal. Optim. 32 (2011) 1009-1018.
- Bello Cruz, J.Y., Iusem, A.N.: An explicit algorithm for monotone variational inequalities. Optimiza- tion 61 (2012) 855-871.
- Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000).
- Browder, F.E.: Convergence theorems for sequences of nonlinear operators in Banach spaces. Math. Z. 100 (1967) 201-225.
- Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer, Berlin (2008).
- Burachik, R.S., Lopes, J.O., Svaiter, B.F.: An outer approximation method for the variational in- equality problem. SIAM J. Control Optim. 43 (2005) 2071-2088.
- Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational in- equalities in Hilbert space. J. Optim. Theory Appl. 148 (2011) 318-335.
- d'Antonio, G., Frangioni, A.: Convergence analysis of deflected conditional approximate subgradient methods. SIAM J. Optim. 20 (2009) 357-386.
- Demyanov, Shomesova, V.F., A.N.: Conditional subdifferentials of convex functions, Dokl. Math. 19 (1978), 1181-1185.
- Demyanov, V.F., Vasilyev, L.V.: Nondifferentiable Optimization (Nauka, Moscow, (1981);
- Engl. transl. in Optimization Software, New York, (1985)).
- Facchinei, F., Pang, J.S.: Finite-dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003).
- Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39 (1997) 669-713.
- Harker, P.T., Pang, J.S.: Finite dimensional variational inequalities and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48 (1990) 161-220.
- Hartman, P., Stampacchia, G.: On some non-linear elliptic differential-functional equations. Acta Math. 115 (1966) 271-310.
- He, B.S.: A new method for a class of variational inequalities. Math. Program. 66 (1994) 137-144.
- Iusem, A.N.: An iterative algorithm for the variational inequality problem. Comp. Appl. Math. 13 (1994) 103-114.
- Iusem, A.N., Svaiter, B.F.: A variant of Korpelevich's method for variational inequalities with a new search strategy. Optimization 42 (1997) 309-321.
- Iusem, A.N., Svaiter, B.F., Teboulle, M.: Entropy-like proximal methods in convex programming. Math. Oper. Res. 19 (1994) 790-814.
- Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980).
- Khobotov, E.N.: Modifications of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. and Math. Phys. 27 (1987) 120-127.
- Konnov, I.V.: Combine Relaxation Methods for Variational Inequalities. Lecture Notes in Economics and Mathematical Systems 495 Springer-Velarg, Berlin (2001).
- Konnov, I.V.: A combined relaxation method for variational inequalities with nonlinear constraints. Math. Program. 80 (1998) 239-252.
- Konnov, I. V.: A class of combined iterative methods for solving variational inequalities. J. Optim. Theory Appl. 94 (1997) 677-693.
- Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomika i Matematicheskie Metody 12 (1976) 747-756.
- Larson, T., Patriksson, M., Stromberg, A-B.: Conditional subgradient optimization -Theory and application. Eur. J. Oper. Res. 88 (1996) 382-403.
- Rockafellar, R.T.: Convex Analysis. Princeton, New York (1970).
- Rockafellar, R.T., Wets, R.J-B.: Variational Analysis. Springer, Berlin (1998).
- Solodov, M.V., Svaiter, B.F.: A new projection method for monotone variational inequality problems. SIAM J. Control Optim. 37 (1999) 765-776.
- Solodov, M.V., Svaiter, B.F.: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program. 87 (2000) 189-202.
- Solodov, M.V., Tseng, P.: Modified projection-type methods for monotone variational inequalities. SIAM J. Control Optim. 34 (1996) 1814-1830.
- Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38 (2000) 431-446.
- Zaraytonelo, E.H.: Projections on Convex Sets in Hilbert Space and Spectral Theory. in Contributions to Nonlinear Functional Analysis, E. Zarantonello, Academic Press, New York (1971) 237-424.