Low temperature energy storage by bio-originated calcium alginate-octyl laurate microcapsules (original) (raw)

Abstract

Octyl laurate phase change material (PCM) was microencapsulated by calcium alginate for eco-friendly low temperature energy storage. The PCM microcapsules were prepared by repeated interfacial coacervation followed by crosslinking method. In order to enhance the antibacterial properties of the as prepared capsules, the calcium alginate shell was functionalized by Ag nanoparticles. Calcium alginate-octyl laurate microcapsules possessed high latent heat of fusion values (130.8 and 128.6 J g−1 on melting and cooling, respectively) which did not significantly change when Ag nanoparticles were entrapped in the shell (127.5 and 125.2 J g−1 for melting and freezing enthalpy changes). Based on these values 71.0 and 69.0% maximal PCM content in the microcapsules were determined by the differential scanning calorimetry method. Both of the Ag-loaded and unloaded calcium alginate-octyl laurate PCM capsules maintained the high heat storing capacity after 250 warming and cooling cycles, which pro...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (25)

  1. Du K, Calautit J, Wang ZH, Wu YP, Liu H. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl Energ. 2018;220:242-73. https:// doi. org/ 10. 1016/j. apene rgy. 2018. 03. 005.
  2. Singh S, Gaikwad KK, Lee YS. Phase change materials for advanced cooling packaging. Environ Chem Lett. 2018;16(3):845- 59. https:// doi. org/ 10. 1007/ s10311-018-0726-7.
  3. Hoang HM, Leducq D, Perez-Masia R, Lagaron JM, Gogou E, Taoukis P, et al. Heat transfer study of submicro-encapsu- lated PCM plate for food packaging application. Int J Refrig. 2015;52:151-60. https:// doi. org/ 10. 1016/j. ijref rig. 2014. 07. 002.
  4. Madhan S, Espírito Santo C, Andrade LP, Silva PD, Gaspar PD. Active and intelligent packaging with phase change materials to promote the shelf life extension of food products. KnE Eng. 2020;5(6):232-41. https:// doi. org/ 10. 18502/ keg. v5i6. 7037.
  5. Sharma A, Shukla A, Chen CR, Wu T-N. Development of phase change materials (PCMs) for low temperature energy storage applications. Sustain Energy Technol Assess. 2014;7:17-21. https:// doi. org/ 10. 1016/j. seta. 2014. 02. 009.
  6. Ghadim HB, Shahbaz K, Al-Shannaq R, Farid MM. Binary mix- tures of fatty alcohols and fatty acid esters as novel solid-liquid phase change materials. Int J Energ Res. 2019;43(14):8536-47. https:// doi. org/ 10. 1002/ er. 4852.
  7. Pirdavari P, Hossainpour S. Numerical study of a Phase Change Material (PCM) embedded solar thermal energy operated cool store: a feasibility study. Int J Refrig. 2020;117:114-23. https:// doi. org/ 10. 1016/j. ijref rig. 2020. 04. 028.
  8. Porto TN, Delgado JMPQ, Guimaraes AS, Magalhaes HLF, Moreira G, Correia BB, et al. Phase change material melting pro- cess in a thermal energy storage system for applications in build- ings. Energies. 2020;13(12):3254. https:// doi. org/ 10. 3390/ en131 23254.
  9. Rao VV, Parameshwaran R, Ram VV. PCM-mortar based con- struction materials for energy efficient buildings: a review on research trends. Energy Build. 2018;158:95-122. https:// doi. org/ 10. 1016/j. enbui ld. 2017. 09. 098.
  10. Li DC, Wang JH, Ding YL, Yao H, Huang Y. Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage. Appl Energ. 2019;236:1168-82. https:// doi. org/ 10. 1016/j. apene rgy. 2018. 12. 040.
  11. Haghighat F, Ravandi SAH, Esfahany MN, Valipouri A, Zarezade Z. Thermal performance of electrospun core-shell phase change fibrous layers at simulated body conditions. Appl Therm Eng. 2019;161:113924. https:// doi. org/ 10. 1016/j. applt herma leng. 2019. 113924.
  12. Wan X, Chen C, Tian SY, Guo BH. Thermal characterization of net-like and form-stable ML/SiO2 composite as novel PCM for cold energy storage. J Energy Storage. 2020;28:101276. https:// doi. org/ 10. 1016/j. est. 2020. 101276.
  13. Rakkappan SR, Sivan S, Ahmed SN, Naarendharan M, Sudhir PS. Preparation, characterisation and energy storage performance study on 1-Decanol-Expanded graphite composite PCM for air- conditioning cold storage system. Int J Refrig. 2021;123:91-101. https:// doi. org/ 10. 1016/j. ijref rig. 2020. 11. 004.
  14. Dhumane R, Mallow A, Qiao YY, Gluesenkamp KR, Graham S, Ling JZ, et al. Enhancing the thermosiphon-driven discharge of a latent heat thermal storage system used in a personal cooling device. Int J Refrig. 2018;88:599-613. https:// doi. org/ 10. 1016/j. ijref rig. 2018. 02. 005.
  15. Kong Q, Mu HL, Han YC, Wu WJ, Tong C, Fang XJ, et al. Bio- degradable phase change materials with high latent heat: prepa- ration and application on Lentinus edodes storage. Food Chem. 2021;364:130391. https:// doi. org/ 10. 1016/j. foodc hem. 2021. 130391.
  16. Wu T, Xie N, Niu JY, Luo JM, Gao XN, Fang YT, et al. Prepa- ration of a low-temperature nanofluid phase change material: MgCl2-H2O eutectic salt solution system with multi-walled carbon nanotubes (MWCNTs). Int J Refrig. 2020;113:136-44. https:// doi. org/ 10. 1016/j. ijref rig. 2020. 02. 008.
  17. Tafone A, Borri E, Cabeza LF, Romagnoli A. Innovative cryo- genic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES) -Numerical dynamic modelling and experimental study of a packed bed unit. Appl Energ. 2021;301:117417. https:// doi. org/ 10. 1016/j. apene rgy. 2021. 117417.
  18. Li YY, Zhang XL, Munyalo JM, Tian Z, Ji J. Preparation and thermophysical properties of low temperature composite phase change material octanoic-lauric acid/expanded graphite. J Mol Liq. 2019;277:577-83. https:// doi. org/ 10. 1016/j. molliq. 2018. 12. 111.
  19. Guillard V, Gaucel S, Fornaciari C, Angellier-Coussy H, Buche P, Gontard N. The next generation of sustainable food packaging to preserve our environment in a circular economy context. Front Nutr. 2018;5:121. https:// doi. org/ 10. 3389/ fnut. 2018. 00121.
  20. Perez-Masia R, Lopez-Rubio A, Fabra MJ, Lagaron JM. Biode- gradable polyester-based heat management materials of interest in refrigeration and smart packaging coatings. J Appl Polym Sci. 2013;130(5):3251-62. https:// doi. org/ 10. 1002/ app. 39555.
  21. Nemeth B, Nemeth AS, Toth J, Fodor-Kardos A, Gyenis J, Feczko T. Consolidated microcapsules with double alginate shell contain- ing paraffin for latent heat storage. Sol Energ Mater Sol Cells. 2015;143:397-405. https:// doi. org/ 10. 1016/j. solmat. 2015. 07. 029.
  22. Nemeth B, Nemeth AS, Ujhidy A, Toth J, Trif L, Gyenis J, et al. Fully bio-originated latent heat storing calcium alginate microcap- sules with high coconut oil loading. Sol Energy. 2018;170:314- 22. https:// doi. org/ 10. 1016/j. solen er. 2018. 05. 066.
  23. Nemeth B, Nemeth AS, Ujhidy A, Toth J, Trif L, Jankovics H, et al. Antimicrobial functionalization of Ca alginate-coconut oil latent heat storing microcapsules by Ag nanoparticles. Int J Energ Res. 2020;44(14):11998-2014. https:// doi. org/ 10. 1002/ er. 5848.
  24. Liston LC, Farnam Y, Krafcik M, Weiss J, Erk K, Tao BY. Binary mixtures of fatty acid methyl esters as phase change materials for low temperature applications. Appl Therm Eng. 2016;96:501-7. https:// doi. org/ 10. 1016/j. applt herma leng. 2015. 11. 007.
  25. Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage. Mater Chem Phys. 2008;109(2-3):459-64. https:// doi. org/ 10. 1016/j. match emphys. 2007. 12. 016.