Ag Nanoparticles Synthesized Using β-Caryophyllene Isolated from Murraya koenigii: Antimalarial (Plasmodium falciparum 3D7) and Anticancer Activity (A549 and HeLa Cell Lines) (original) (raw)

The development of effective and reliable drugs in the fight against malaria and cancer represents a crucial challenge in modern parasitology. The present investigation focuses on a simple and novel strategy for the biological synthesis of silver nanoparticles (Ag NPs) using b-caryophyllene isolated from the leaf extract of Murraya koenigii, as reducing and stabilizing agent. UV-visible spectroscopy of the Ag NPs in aqueous suspension revealed strong surface plasmon resonance at 420 nm. Fourier transform infrared spectrum showed the various characteristic peaks of reducing functional groups. X-ray diffraction indicated 2 theta values confirming the Bragg's refraction index of Ag NPs. Scanning electron microscopy showed the nanoparticle spherical shapes while transmission electron microscopy showed nanoparticle sizes ranging from 5 to 100 nm, with an average size of 29.42 nm. Ag NPs exhibited promising activity on chloroquine-sensitive Plasmodium falciparum (3D7) (IC 50 : 2.34 ± 0.07 lg/ml), as well as significant cytotoxic activity on lung cancer cells (IC 50 : 9.39 ± 0.08 lg/ml). Overall, bcaryophyllene synthesized Ag NPs could be further considered as a promising source for the development of cost effective and safer alternative drugs to treat malaria and cancer.