Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance (original) (raw)

Specific subpopulations of hypothalamic leptin receptor-expressing neurons mediate the effects of early developmental leptin receptor deletion on energy balance

Molecular metabolism, 2018

To date, early developmental ablation of leptin receptor (LepRb) expression from circumscribed populations of hypothalamic neurons (e.g., arcuate nucleus (ARC) Pomc- or Agrp-expressing cells) has only minimally affected energy balance. In contrast, removal of LepRb from at least two large populations (expressing vGat or Nos1) spanning multiple hypothalamic regions produced profound obesity and metabolic dysfunction. Thus, we tested the notion that the total number of leptin-responsive hypothalamic neurons (rather than specific subsets of cells with a particular molecular or anatomical signature) subjected to early LepRb deletion might determine energy balance. We generated new mouse lines deleted for LepRb in ARC Ghrh neurons or in Htr2c neurons (representing roughly half of all hypothalamic LepRb neurons, distributed across many nuclei). We compared the phenotypes of these mice to previously-reported models lacking LepRb in Pomc, Agrp, vGat or Nos1 cells. The early developmental de...

Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake

Molecular Metabolism, 2014

Objective: Leptin responsive neurons play an important role in energy homeostasis, controlling specific autonomic, behavioral, and neuroendocrine functions. We have previously identified a population of leptin receptor (LepRb) expressing neurons within the dorsomedial hypothalamus/dorsal hypothalamic area (DMH/DHA) which are related to neuronal circuits that control brown adipose tissue (BAT) thermogenesis. Intra-DMH leptin injections also activate sympathetic outflow to BAT, but whether such effects are mediated directly via DMH/DHA LepRb neurons and whether this is physiologically relevant for whole body energy expenditure and body weight regulation has yet to be determined. Methods: We used pharmacosynthetic receptors (DREADDs) to selectively activate DMH/DHA LepRb neurons. We further deleted LepRb with virally driven cre-recombinase from DMH/DHA neurons and determined the physiological importance of DMH/DHA LepRb neurons in whole body energy homeostasis. Results: Neuronal activation of DMH/DHA LepRb neurons with DREADDs promoted BAT thermogenesis and locomotor activity, which robustly induced energy expenditure (p < 0.001) and decreases body weight (p < 0.001). Similarly, intra-DMH/DHA leptin injections normalized hypothermia and attenuated body weight gain in leptin-deficient ob/ob mice. Conversely, ablation of LepRb from DMH/DHA neurons remarkably drives weight gain (p < 0.001) by reducing energy expenditure (p < 0.001) and locomotor activity (p < 0.001). The observed changes in body weight were largely independent of food intake. Conclusion: Taken together, our data highlight that DMH/DHA LepRb neurons are sufficient and necessary to regulate energy expenditure and body weight.

Selective Loss of Leptin Receptors In the Ventromedial Hypothalamic Nucleus Results In Increased Adiposity and a Metabolic Syndrome

Endocrinology, 2008

Leptin, an adipocyte-derived hormone, has emerged as a critical regulator of energy homeostasis. The leptin receptor (Lepr) is expressed in discrete regions of the brain; among the sites of highest expression are several mediobasal hypothalamic nuclei known to play a role in energy homeostasis, including the arcuate nucleus, the ventromedial hypothalamic nucleus (VMH), and the dorsomedial hypothalamic nucleus. Although most studies have focused on leptin's actions in the arcuate nucleus, the role of Lepr in these other sites has received less attention. To explore the role of leptin signaling in the VMH, we used bacterial artificial chromosome transgenesis to target Cre recombinase to VMH neurons expressing steroidogenic factor 1, thereby inactivating a conditional Lepr allele specifically in steroidogenic factor 1 neurons of the VMH. These knockout (KO) mice, designated Lepr KO VMH , exhibited obesity, particularly when challenged with a highfat diet. On a low-fat diet, Lepr KO VMH mice exhibited significantly increased adipose mass even when their weights were comparable to wild-type littermates. Furthermore, these mice exhibited a metabolic syndrome including hepatic steatosis, dyslipidemia, and hyperleptinemia. Lepr KO VMH mice were hyperinsulinemic from the age of weaning and eventually developed overt glucose intolerance. These data define nonredundant roles of the Lepr in VMH neurons in energy homeostasis and provide a model system for studying other actions of leptin in the VMH.

Unsilencing of native leptin receptors (LepR) in hypothalamic SF1 neurons does not rescue obese phenotype in LepR-deficient mice

American Journal of Physiology-Regulatory, Integrative and Comparative Physiology

Leptin receptor (LepR) signaling in neurons of the ventromedial nucleus of the hypothalamus (VMH), specifically those expressing steroidogenic factor-1 (SF1), have been proposed to play a key role in controlling energy balance. By crossing LepR-silenced (LepRloxTB) mice to those expressing SF1-Cre, we unsilenced native LepR specifically in the VMH and tested whether SF1 neurons in the VMH are critical mediators of leptin's effect on energy homeostasis. LepRloxTB x SF1-Cre (KO/Tg+) mice were metabolically phenotyped and compared to littermate controls that either expressed or were deficient in LepR. Leptin-induced pSTAT3 was present in the VMH of KO/Tg+ mice and absent in other hypothalamic nuclei. VMH leptin signaling did not ameliorate obesity resulting from LepR-deficiency in chow-fed mice. There was no change in food intake or energy expenditure when comparing complete LepR-null mice to KO/Tg+ mice, nor did KO/Tg+ show improved glucose tolerance. The presence of functional Le...

Disrupted Leptin Signaling in the Lateral Hypothalamus and Ventral Premammillary Nucleus Alters Insulin and Glucagon Secretion and Protects Against Diet-Induced Obesity

Endocrinology, 2016

Leptin signaling in the central nervous system, and particularly the arcuate hypothalamic nucleus, is important for regulating energy and glucose homeostasis. However, the roles of extra-arcuate leptin responsive neurons are less defined. In the current study, we generated mice with widespread inactivation of the long leptin receptor isoform in the central nervous system via Synapsin promoter-driven Cre (Leprflox/flox Syn-cre mice). Within the hypothalamus, leptin signaling was disrupted in the lateral hypothalamic area (LHA) and ventral premammillary nucleus (PMV) but remained intact in the arcuate hypothalamic nucleus and ventromedial hypothalamic nucleus, dorsomedial hypothalamic nucleus, and nucleus of the tractus solitarius. To investigate the role of LHA/PMV neuronal leptin signaling, we examined glucose and energy homeostasis in Leprflox/flox Syn-cre mice and Leprflox/flox littermates under basal and diet-induced obese conditions and tested the role of LHA/PMV neurons in lept...

Molecular profile and response to energy deficit of leptin-receptor neurons in the lateral hypothalamus

Scientific Reports

Leptin exerts its effects on energy balance by inhibiting food intake and increasing energy expenditure via leptin receptors in the hypothalamus. While LepR neurons in the arcuate nucleus of the hypothalamus, the primary target of leptin, have been extensively studied, LepR neurons in other hypothalamic nuclei remain understudied. LepR neurons in the lateral hypothalamus contribute to leptin's effects on food intake and reward, but due to the low abundance of this population it has been difficult to study their molecular profile and responses to energy deficit. We here explore the transcriptome of LepR neurons in the LH and their response to energy deficit. Male LepR-Cre mice were injected in the LH with an AAV carrying Cre-dependent L10:GFP. Few weeks later the hypothalami from fed and food-restricted (24-h) mice were dissected and the TRAP protocol was performed, for the isolation of translating mRNAs from LepR cells in the LH, followed by RNA sequencing. After mapping and nor...

Cafeteria diet-induced obesity reduces leptin-stimulated NADPH-diaphorase reactivity in the hypothalamic arcuate nucleus of rats

Acta Histochemica, 2020

Leptin is an adipokine that plays an important role in the regulation of energy homeostasis. The failure of endogenous and exogenous leptin to mediate its effects (for example, at suppressing appetite and decreasing body weight) has been termed leptin resistance. Hyperleptinemia and leptin resistance can be well demonstrated in animals in which obesity is induced by consumption of a palatable, high-calorie diet (e.g., cafeteria dietinduced obesity). Since leptin receptor signaling is known to be impaired in the hypothalamic arcuate nucleus (ARC) of obese rodents, we investigated the effect of leptin on nicotinamide adenine dinucleotide phosphatediaphorase (NADPH-d) reactivity in the ARC of male Wistar rats with cafeteria diet-induced obesity. Our results have shown that after intraperitoneal administration of leptin, the number of NADPH-d positive neurons in the ARC was significantly lower in obese rats compared with that observed in normal weight rats. Additionally, we have found that leptin-induced NADPH-d staining in ARC neurons and the adjacent ependyma was decreased in obese rats. The results presented here suggest that the ability of leptin to activate nitric oxide synthase in neurons within the ARC as well as tanycytes and ependymal cells of the third ventricle is reduced in rats made obese by a cafeteria diet. We speculate that impairment in leptin-induced NO production presents a potential mechanism, involved in the pathogenesis of obesity and obesity-related disease states.

Sixteen years and counting: an update on leptin in energy balance

The Journal of clinical investigation, 2011

Cloned in 1994, the ob gene encodes the protein hormone leptin, which is produced and secreted by white adipose tissue. Since its discovery, leptin has been found to have profound effects on behavior, metabolic rate, endocrine axes, and glucose fluxes. Leptin deficiency in mice and humans causes morbid obesity, diabetes, and various neuroendocrine anomalies, and replacement leads to decreased food intake, normalized glucose homeostasis, and increased energy expenditure. Here, we provide an update on the most current understanding of leptin-sensitive neural pathways in terms of both anatomical organization and physiological roles.

Essential role for hypothalamic calcitonin receptor-expressing neurons in the control of food intake by leptin

Endocrinology, 2018

The adipocyte-derived hormone, leptin, acts via its receptor (LepRb) on central nervous system neurons to communicate the repletion of long-term energy stores, to decrease food intake and promote energy expenditure. We generated mice that express cre recombinase from the calcitonin receptor (Calcr) locus (Calcrcre mice) to study Calcr-expressing LepRb (LepRbCalcr) neurons, which reside predominantly in the arcuate nucleus (ARC). Calcrcre-mediated ablation of LepRb in LepRbCalcrKO mice caused hyperphagic obesity. Since LepRb-mediated transcriptional control plays a crucial role in leptin action, we employed TRAP-seq to define the transcriptome of hypothalamic Calcr neurons, along with its alteration in LepRbCalcrKO mice. We found that ARC LepRbCalcr cells include NPY/AgRP/GABA ("NAG") cells as well as non-NAG cells that are distinct from POMC cells. Furthermore, while LepRbCalcrKO mice exhibited dysregulated expression of several genes involved in energy balance, neither th...

Endogenous Leptin Signaling in the Caudal Nucleus Tractus Solitarius and Area Postrema Is Required for Energy Balance Regulation

Cell Metabolism, 2010

Medial nucleus tractus solitarius (mNTS) neurons express leptin receptors (LepR) and intramNTS delivery of leptin reduces food intake and body weight. Here, the contribution of endogenous LepR signaling in mNTS neurons to energy balance control was examined. Knockdown of LepR in mNTS and area postrema (AP) neurons of rats (LepRKD) via adeno-associated virus short hairpin RNAinterference (AAV-shRNAi) resulted in significant hyperphagia for chow, high-fat and sucrose diets, yielding increased body weight and adiposity. The chronic hyperphagia of mNTS/AP LepRKD rats is likely mediated by a reduction in leptin potentiation of gastrointestinal satiation signaling, as LepRKD rats showed decreased sensitivity to the intake reducing effects of cholecystokinin. LepRKD rats showed increased basal AMP-kinase activity in mNTS/AP micropunches and pharmacological data suggest that this increase provides a likely mechanism for their chronic hyperphagia. Overall these findings demonstrate that LepRs in mNTS and AP neurons are required for normal energy balance control.