The effects of ultraviolet-ozone-treated ultra-thin MnO-doped ZnO film as anode buffer layer on the electrical characteristics of organic light-emitting diodes (original) (raw)

2015, Journal of Applied Physics

In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing an MnO-doped ZnO film as a buffer layer between the indium tin oxide (ITO) electrode and the a-naphthylphenylbiphenyldiamine hole transport layer. The enhancement mechanism was systematically investigated, and the X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy results revealed the formation of the UV-ozone-treated MnO-doped ZnO film. With this film, the work function increased from 4.8 eV (standard ITO electrode ($1065 X=ٗ)) to 5.27 eV (UV-ozone-treated MnO-doped ZnO deposited on the ITO electrode with 1 wt. % for 1 nm), while the surface roughness of the UV-ozone-treated MnO-doped ZnO film was smoother than that of the ITO electrode. The deposited UV-ozone-treated MnO-doped ZnO film increased the surface energy and polarity of the ITO surface, as determined from contact angle measurements. Further, results from admittance spectroscopy showed that the inserted UV-ozone-treated MnO-doped ZnO film increased the capacitance and conductance of the OLEDs. It was also found that the carrier injection increased in the space-charge region when the UV-ozone-treated MnO-doped ZnO buffer layer was inserted. Moreover, the turn-on voltage of the devices decreased from 3.8 V to 3.2 V, the luminance increased from 7588 cd/m 2 to 20 350 cd/m 2 , and the current efficiency increased from 3.2 cd/ A to 5.8 cd/A when a 1 nm-thick UV-ozone-treated MnO-doped ZnO film with 1 wt. % was inserted as a buffer layer in the OLEDs. V

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.