Plants: Emerging as Green Source toward Biosynthesis of Metallic Nanoparticles and its Applications (original) (raw)

Plant Mediated Green Synthesis of Silver Nanoparticles-A Review

International Journal of Plant Biology & Research, 2015

Developing an environment friendly process for synthesis of nanoparticles is a significant step in the field of nanotechnology. Nanotechnology involves the tailoring of materials at the atomic level to attain unique properties, which can be suitably manipulated for the desired applications. Among the all metallic nanoparticles silver nanoparticles draw more attention due to its unique physical, chemical and biological properties. Green protocol of synthesizing nanoparticles has emerged as an alternative to overcome the limitation of conventional methods. Plant and microorganisms are majorly applied for green synthesis of metallic nanoparticles. Using plants towards synthesis of nanoparticles are emerging and also beneficial compared to microbes with the presence of broad variability of bio-molecules in plants which can act as capping/stabilizing and reducing agents and so increases the rate of reduction and stabilization of synthesized nanoparticles. Among all organisms plants seem to be the best candidates for biosynthesis of silver nanoparticles and they are suitable for large-scale biosynthesis. Nanoparticles produced by plants are more stable and the rate of synthesis is faster than in the case of microorganisms. This review focuses on the green synthesis of silver nanoparticles using various plant sources.

PLANT MEDIATED SYNTHESIS OF SILVER NANOPARTICLES AND THEIR BIOLOGICAL ACTIVITY

Biological methods of synthesis have paved way for " greener synthesis " of nanoparticles and these have proven to be better methods due to slower kinetics, they offer better manipulation and control over crystal growth and their stabilization. This has motivated an upsurge in research on the synthesis routes that allow better control of shape and size for various nanotechnological applications. In this work, we have explored an inventive contribution for synthesis of silver nanoparticles using catharanthus roseus (Sadabahar), Musa paradisiacal (Plantain flower) and Polygonum odoratum (Coriandium) leaf extract. Synthesized nanoparticles were characterized by various methods such as UV-Vis spectroscopy, SEM and XRD. In addition, antibacterial activity of the synthesized silver nanoparticles was also determined. This new method is rapid time scales for biosynthesis of metallic nanoparticles using environmentally benign natural resources as an alternative to chemical synthesis protocols as reductant for synthesizing silver nanoparticles. 250 | P a g e

In Green Approaches: Synthesis of Silver Nanoparticles from Medicinal Plants-A Review

2015

Nanotechnology is a field that is mushrooming, making an impact in all spheres of human life. The development of green processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology.Synthesis of metal Nanoparticles is a growing area for research due to its potentiality in the application and development of advanced technologies. The use of AgNPs has become more widespread in our society. In this research article, a simple and eco-friendly biosynthesis of AgNPs was prepared using various plant extract as reducing agent. This review reports the potential of plants i.e. "green chemistry" to synthesis nanoparticles not only in the laboratory scale but also in their natural environment.

Potential Applications of Plants for the Synthesis of Gold and Silver Nanoparticles : A Review

International Journal for Research in Applied Science and Engineering Technology, 2019

Nanoparticles are widely used in biotechnology and biomedical fields such as in diagnosis and therapy. Recently, synthesizing metal nanoparticles using plants has been extensively studied and has been recognized as a green and efficient way for further exploiting plant parts as convenient nanofactories. The importance of nanotechnology is highly increased in last years. Gold and silver nanoparticles are significant in the process due to their many peculiarities such as surface Plasmon absorption and the surface accessibility for further functionalization. As gold and silver nanoparticle are proved to be safest for drugs applications they are considered very important and used in several applications. Synthesis of gold and silver nanoparticle can be done through three methods like Physical, Chemical reduction and Biological or Green methods. Present work have been presented to focus on the green method of its synthesis. The biosynthesis of nanoparticles has many advantages over tedious, toxic and expensive physical and chemical methods of synthesis. The goal, was to develop a reliable, ecofriendly and easy process for the synthesis of gold and silver nanoparticles. The size and shape of nanoparticle are the key to their biomedical property. Green synthesis of nanoparticle is feasible way for the future and this review provides gold and silver nanoparticle synthesis by green method because in recent years' efficient green chemistry methods for the synthesis of metal nanoparticle has become major focus of researchers.

Plant Extracts Promoted Preparation of Silver and Gold Nano Particles: A Systematic Review

Nano, 2019

Eco-friendly synthesis of metal nanoparticles has accrued utmost interest by researchers in the last decade for their distinct properties making them applicable in different fields of science and technology. With regard to its low cost, low environmental effect, zero contamination and higher reducing potential, their synthesis by green chemistry procedure is an emerging area in nanobiotechnology. Plant-based nanoparticles produced are more stable, with high rate of synthesis and are suitable for large scale biosynthesis as compared to the use of microorganisms which require stringent control on cell cultures. Plant-based nanoparticles have advantages over other methods due to presence of biomolecules acting both as capping and reducing agents by increasing the rate of reduction and stabilization of nanoparticles. Furthermore, secondary metabolites present in plants are used for reducing metal ions in single step reaction. In this review paper, we have cited 265 research articles and...

Plant mediated synthesis of silver nanoparticles-tapping the unexploited sources

scholarsresearchlibrary.com

Interest in "green nanotechnology" in nanoparticle biosynthesis is growing among researchers. Nanotechnologies, due to their physicochemical and biological properties, have applications in diverse fields, including drug delivery, sensors, optoelectronics, and magnetic devices. This review focuses on the green synthesis of silver nanoparticles (AgNPs) using plant sources. Green synthesis of nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. The sizes of AgNPs are in the range of 1 to 100 nm. Characterization of synthesized nanoparticles is accomplished through UV spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. AgNPs have great potential to act as antimicrobial agents. The green synthesis of AgNPs can be efficiently applied for future engineering and medical concerns. Different types of cancers can be treated and/or controlled by phytonanotechnology. The present review provides a comprehensive survey of plant-mediated synthesis of AgNPs with specific focus on their applications, e.g., antimicrobial, antioxidant, and anticancer activities.

Plant-mediated synthesis of silver and gold nanoparticles and their applications

Journal of Chemical Technology & Biotechnology, 2009

Nanobiotechnology deals with the synthesis of nanostructures using living organisms. Among the use of living organisms for nanoparticle synthesis, plants have found application particularly in metal nanoparticle synthesis. Use of plants for synthesis of nanoparticles could be advantageous over other environmentally benign biological processes as this eliminates the elaborate process of maintaining cell cultures. Biosynthetic processes for nanoparticles would be more useful if nanoparticles were produced extracellularly using plants or their extracts and in a controlled manner according to their size, dispersity and shape. Plant use can also be suitably scaled up for large-scale synthesis of nanoparticles. In view of this, we have reviewed here the use of plants or their extracts in the synthesis of silver and gold nanoparticles for various human applications.

A Review on Plants and Microorganisms Mediated Synthesis of Silver Nanoparticles, Role of Plants Metabolites and Applications

International Journal of Environmental Research and Public Health, 2022

Silver nanoparticles are one of the most extensively studied nanomaterials due to their high stability and low chemical reactivity in comparison to other metals. They are commonly synthesized using toxic chemical reducing agents which reduce metal ions into uncharged nanoparticles. However, in the last few decades, several efforts were made to develop green synthesis methods to avoid the use of hazardous materials. The natural biomolecules found in plants such as proteins/enzymes, amino acids, polysaccharides, alkaloids, alcoholic compounds, and vitamins are responsible for the formation of silver nanoparticles. The green synthesis of silver nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. In the present review we describe the green synthesis of nanoparticles using plants, bacteria, and fungi and the role of plant metabolites in the synthesis process. Moreover, the present review also descr...

Biosynthesis of silver nanoparticles using plant extracts: an update

2019

In the recent period, different types of nanoparticles (NPs) have been proposed to improve antioxidant, but also antimicrobial properties of various natural compounds. Much attention has been dedicated to synthesis of NPs using biogenic enzymatic processes. The biosynthesis of NPs has been claimed to be superior to chemical synthesis, especially because of the opportunity of producing more environment-friendly and less toxic products. Among the numerous types of NPs, bioreduction-produced silver NPs from ionic silver-containing solutions are receiving much attention. In this work, we present an update on our investigation on biosynthesis of silver NPs (AgNPs), thus presenting a method of reduction of silver nitrate solution, using a plant decoct from black pepper fruit (Piper nigrum, L). Namely, we present biosynthesis of AgNPs from 1 mmol/L AgNO3 solution, by bioreduction that was provided from the complex composition of pepper fruit extract, obtained by decoction. The formation of...

Green Synthesis of Metallic Nanoparticles Using Plant Compounds and Their Applications

Emerging Research on Bioinspired Materials Engineering, 2000

The advancement in nanoparticulate system has a great impact in many scientific areas. Metallic nanoparticles (NPs) such as silver, gold and copper were found to exhibit antibacterial and other biological activities. The phytochemical constituents (Tannins, flavonoids, terpenoids, saponins and glycosides) present in the plant extracts were used for the green synthesis of NPs of desired size and morphology. Moreover, these active molecules act as reducing and capping agents for the synthe¬sis of NPs, which makes them suitable for biomedical applications. Apart from many approach on synthesis of nanoparticles, green synthesis method becomes more preferable because of its ecofriendly and nontoxic approach. This approach might pave the path for researchers across the globe to explore the potential of different herbs in the synthesis of NPs. This chapter will discuss the synthesis of various metal NPs using plants and their phytochemical constituent's involved during the synthesis. A section devoted to the different applications will be presented.