High-power light-emitting diode based facility for plant cultivation (original) (raw)

An Overview of Led Lighting in Agriculture for the Growth and Development of Plants

2018

The overall aim of the work was to investigate the applicability of solid-state or semiconductor LED lighting technology in plant growth. This is accomplished by an extensive review of related research work conducted so far and of the results gathered from the growth tests performed. The work is concerned with the basic concepts regarding the photosynthetic process in plants growth with artificial lighting. Comparative study of light generated by conventional light sources and modern LED light sources is also elaborated in this paper.

Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs)

Scientia Horticulturae, 2018

Light-emitting diode (LED) technology has rapidly advanced the past years and it is nowadays irrevocably linked with controlled-environment agriculture (CEA). We provide here an amalgamation of the recent research achievements in the horticulture and floriculture industry, ranging from greenhouse applications to climate rooms and vertical farming. We hope this overview bestows ample examples for researchers and growers in the selection of the appropriate LED light solution for amending crop yield, phytochemical content, nutritional value, flowering control, transplant success, pre-harvest and postharvest product quality, and production of regeneration material. We leave the reader with some future prospects and directions that need to be taken into account in this ever-growing field.

High Light Intensity from Blue-Red LEDs Enhance Photosynthetic Performance, Plant Growth, and Optical Properties of Red Lettuce in Controlled Environment

Horticulturae, 2022

Plant factories using artificial light to produce vegetables have high energy costs due to the high demand for electricity for lighting. Compared to conventional light sources, light-emitting diodes (LEDs) offer the possibility of tailoring the light spectrum and regulating light intensity and are more energy-efficient in terms of energy conversion regardless of the levels of lighting intensity. Optimal light intensity and daily light integral (DLI) requirements are key factors for plant growth; however, their values vary among species and varieties. Our experiment aimed to identify the best light intensity to produce lettuce plants in controlled environment. Lettuce plants of the type Batavia cv ‘Blackhawk’ were grown in plastic pots filled with perlite and peat (20:80 v/v) for 33 days in a growth chamber under blue (B, 20%) and red (R, 80%) LED light at a photosynthetic flux density of 130 µmol m−2 s−1 (BR 130, DLI 7.49 mol m−2 d−1), 259 µmol m−2 s−1 (BR 259, DLI 14.92 mol m−2 d−1...

LEDs for energy efficient greenhouse lighting

Renewable and Sustainable Energy Reviews, 2015

Light energy is an important factor for plant growth. In regions where the natural light source (solar radiation) is not sufficient for growth optimization, additional light sources are being used. Traditional light sources such as high pressure sodium lamps and other metal halide lamps are not very efficient and generate high radiant heat. Therefore, new sustainable solutions should be developed for energy efficient greenhouse lighting. Recent developments in the field of light source technologies have opened up new perspectives for sustainable and highly efficient light sources in the form of LEDs (light-emitting diodes) for greenhouse lighting. This review focuses on the potential of LEDs to replace traditional light sources in the greenhouse. In a comparative economic analysis of traditional vs. LED lighting, we show that the introduction of LEDs allows reduction of the production cost of vegetables in the long-run (several years), due to the LEDs' high energy efficiency, low maintenance cost and longevity. In order to evaluate LEDs as a true alternative to current lighting sources, species specific plant response to different wavelengths is discussed in a comparative study. However, more detailed scientific studies are necessary to understand the effect of different spectra (using LEDs) on plants physiology. Technical innovations are required to design and realize an energy efficient light source with a spectrum tailored for optimal plant growth in specific plant species.

Effect of alternating red and blue light irradiation generated by light emitting diodes on the growth of leaf lettuce

2014

Because global climate change has made agricultural supply unstable, plant factories are expected to be a safe and stable means of food production. As the light source of a plant factory or controlled greenhouse, the light emitting diode (LED) is expected to solve cost problems and promote plant growth efficiently. In this study, we examined the light condition created by using monochromatic red and blue LEDs, to provide both simultaneous and alternating irradiation to leaf lettuce. The result was that simultaneous red and blue irradiation promoted plant growth more effectively than monochromatic and fluorescent light irradiation. Moreover, alternating red and blue light accelerated plant growth significantly even when the total light intensity per day was the same as with simultaneous irradiation. The fresh weight in altering irradiation was almost two times higher than with fluorescent light and about 1.6 times higher than with simultaneous irradiation. The growth-promoting effect...

Light Emitting Diodes (LEDs) as Agricultural Lighting: Impact and Its Potential on Improving Physiology, Flowering, and Secondary Metabolites of Crops

Sustainability, 2021

A reduction in crop productivity in cultivable land and challenging environmental factors have directed advancement in indoor cultivation systems, such that the yield parameters are higher in outdoor cultivation systems. In wake of this situation, light emitting diode (LED) lighting has proved to be promising in the field of agricultural lighting. Properties such as energy efficiency, long lifetime, photon flux efficacy and flexibility in application make LEDs better suited for future agricultural lighting systems over traditional lighting systems. Different LED spectrums have varied effects on the morphogenesis and photosynthetic responses in plants. LEDs have a profound effect on plant growth and development and also control key physiological processes such as phototropism, the immigration of chloroplasts, day/night period control and the opening/closing of stomata. Moreover, the synthesis of bioactive compounds and antioxidants on exposure to LED spectrum also provides informatio...

Role of LED (Light Emitting Diode) Light Illumination on the Growth of Plants in Greenhouse Farming-Hydroponics: IOT Technology

World Journal of Advanced Research and Reviews, 2024

This review paper of literature highlights role of Light Emitting Diode (LED) on the growth of plants under controlled conditions of greenhouse farming particularly hydroponics. “Internet of Things (IOT)” is a system of interconnected computing devices, sensors, objects, microcontrollers, and cloud servers that can transmit data across a network and control other devices remotely without human intervention. Light Emitting Diode (LED) is a more efficient, versatile, lasts longer, highly energy-efficient, directional, narrow light spectrum, low power consumption, and little heat production. Common LED colors include amber, red, green, and blue. Hydroponic grow lights are designed to mimic the natural light that plants need for photosynthesis. Plants can only use the spectrum of visible light to produce photosynthesis, and this narrow spectrum (400 to 700 nanometer) is recognized as the Photosynthetically Active Radiation (PAR). The development and growth of diverse plant species can be influenced differently by a variety of colored LED lights. LED illumination provides an efficient way to improve yield and modify plant properties. Therefore, LED systems plays an important role in controlling morphological, genetic, physiological, chemical properties, increasing the synthesis of a variety of beneficial secondary metabolites, and optobiological interactions of plants in greenhouse farming. In general, red and blue light is essential for maximizing the photosynthesis process due to their strong absorption by the plant chlorophyll molecules. LED illumination sources are increasingly being utilized to enhance the growth rate of vegetables and herbs cultivated in greenhouses worldwide. LED illumination spectrum manipulation could enable significant morphological adaptations, and identification of the wavelength ranges is required to increase the plant photosynthesis process.

Light-emitting diodes as a light source for photosynthesis research

Photosynthesis Research, 1994

Light-emitting diodes (LED) can provide large fluxes of red photons and so could be used to make lightwcight, efficient lighting systems for photosynthetic research. We compared photosynthesis, stomatal conductance and isoprene emission (a sensitive indicator of ATP status) from leaves of kudzu (Pueraria lobata (Willd) Ohwi.) enclosed in a leaf chamber illuminated by LEDs versus by a xenon arc lamp. Stomata1 conductance was measured to determine if red LED light could sufficiently open stomata. The LEDs produced an even field of red light (peak emission 656 k 5 nm) over the range of 0-1500 pmol m-'s-'. Under ambient COz the photosynthetic response to red light deviated slightly from the response measured in white light and stomatal conductance followed a similar pattern. Isoprene emission also increased with light similar to photosynthesis in white light and red light. The response of photosynthesis to CO, was similar under the LED and xenon arc lamps at equal photosynthetic irradiance of 1000 pmol m-' s-'. There was no statistical difference between the white light and red light measurements in high CO,. Some leaves exhibited feedback inhibition of photosynthesis which was equally evident under irradiation of either lamp type. Photosynthesis research including electron transport, carbon metabolism and trace gas emission studies should benefit greatly from the increased reliability, repeatability and portability of a photosynthesis lamp based on lightemitting diodes.

Plant physiological acclimation to irradiation by light-emitting diodes (LEDs)

2006

LEDs may be a suitable light source for future use as assimilation lighting in protected greenhouse cultivation. LEDs have properties which offer advantages compared to other light sources, but which also raise specific research questions. The narrow band spectrum of LEDs enables manufacturers to produce LED based light-sources specifically suitable for photosynthesis and other horticulturally relevant plant properties. The low radiated heat also makes LEDs suitable for interlighting (i.e. lighting from within the canopy), for which high pressure sodium lamps are not suitable. However, when using LEDs, crops must be able to acclimate their photosynthetic functioning to narrow band lighting (NBL) to efficiently use this light. Also, daylight-adapted leaves must be able to re-acclimate to NBL if LEDs would be used for interlighting in a high-wire grown crop. If low photosynthesis rates in older, lower leaves of the crop are also due to leaf age, besides low light, interlighting would be less effective. For investigating the intrinsic effect of NBL, we used 9 different arrays comprised of a single LED type (peak wavelengths in the range 460-668 nm) at light-limited irradiance (50 µmol m-2 s-1). Spirodela polyrrhiza (Lemnaceae) was cultivated as its leaves can not change in distance or orientation towards the light source. This enabled us to compare the effects of the different light sources on parameters such as growth rate and photosynthetic pigment composition. In order to separate the effect of light intensity and leaf age on photosynthesis, tomato plants were grown horizontally, so that older leaves were not shaded by younger leaves. Re-acclimation of leaves to NBL was investigated by illuminating older leaves (low in the canopy) using different LED arrays in a high-wire grown tomato crop. The light-harvesting apparatus of Spirodela polyrrhiza acclimated to the different NBL regimes within 6 days. Leaf age proved to be an irrelevant factor for photosynthetic capacity (P max) of greenhouse grown tomato plants. P max of leaves at a low position in a high-wire grown tomato crop, with a low P max , did re-acclimate to the higher light intensities supplied by the supplemental NBL by progressively increasing their P max. However, as it took 14 days for P max to increase from 5.6 to 12.4 µmol CO 2 m-2 s-1 , maintaining a continuously higher light level within the canopy would be more effective.

Plant experiments with light-emitting diode module in Svet space greenhouse

2008

Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for SVET Space Greenhouse using Cree R XLamp R 7090 XR light-emitting diodes (LEDs) is developed. Three types of monochromic LEDs emitting in the red, green, and blue region of the spectrum are used. The new LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. DMX programming device controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 µmol.m-2 .s-1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with "salad-type" plants - lettuce and chicory were carried at 400 µmol.m-2 .s-1 PPFD (high light - HL) and 220 µmol.m-2 .s-1 PPFD (low light - LL) and composition 70% red, 20% green and 10% blue light. In vivo modulated chlorophyll fluorescence was measured by a PAM fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II (ΦP SII ) and non-photochemical quenching (NPQ) were calculated. Both lettuce and chicory plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by the actual PSII quantum yield, ΦP SII . The calculated steady state NPQ values did not differ significantly in lettuce and chicory. The rapid phase of the NPQ increase was accelerated in all studied LL leaves. In conclusion low light conditions ensured more effective functioning of PSII than HL when lettuce and chicory plants were grown at 70% red, 20% green and 10% blue light composition.