Role of the PAS Sensor Domains in the Bacillus subtilis Sporulation Kinase KinA (original) (raw)

Histidine kinases are sophisticated molecular sensors that are used by bacteria to detect and respond to a multitude of environ- mental signals. KinA is the major histidine kinase required for initiation of sporulation upon nutrient deprivation in Bacillus subtilis. KinA has a large N-terminal region (residues 1 to 382) that is uniquely composed of three tandem Per-ARNT-Sim (PAS) domains that have been proposed to constitute a sensor module. To further enhance our understanding of this “sensor” region, we defined the boundaries that give rise to the minimal autonomously folded PAS domains and analyzed their homo- and het- eroassociation properties using analytical ultracentrifugation, nuclear magnetic resonance (NMR) spectroscopy, and multiangle laser light scattering. We show that PASA self-associates very weakly, while PASC is primarily a monomer. In contrast, PASB forms a stable dimer (Kd [dissociation constant] of <10 nM), and it appears to be the main N-terminal determinant of KinA dimerization. Analysis of KinA mutants deficient for one or more PAS domains revealed a critical role for PASB, but not PASA, in autophosphorylation of KinA. Our findings suggest that dimerization of PASB is important for keeping the catalytic domain of KinA in a functional conformation. We use this information to propose a model for the structure of the N-terminal sensor mod- ule of KinA.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.