Vitamin D Receptor Signaling Regulates Craniofacial Cartilage Development in Zebrafish (original) (raw)

Specific craniofacial cartilage dysmorphogenesis coincides with a loss of dlx gene expression in retinoic acid-treated zebrafish embryos

Mechanisms of Development, 1997

Treatments of zebrafish embryos with retinoic acid (RA), a substance known to cause abnormal craniofacial cartilage development in other vertebrates, result in dose-and stage-dependent losses of dlx homeobox gene expression in several regions of the embryo. Dlx expression in neural crest cells migrating from the hindbrain and in the visceral arch primordia is particularly sensitive to RA treatment. The strongest effects are observed when RA is administered prior to or during crest cell migration but effects can also be observed if RA is applied when the cells have entered the primordia of the arches. Losses of dlx expression correlate either with the loss of cartilage elements originating from hindbrain neural crest cells or with abnormal morphology of these elements. Cartilage elements that originate from midbrain neural crest cells, which do not express dlx genes, are less affected. Taken together with the observation that the normal patterns of visceral arch dlx expression just prior to cartilage condensation resemble the morphology of the cartilage elements that are about to differentiate, our results suggest that dlx genes are an important part of a multi-step process in the development of a subset of craniofacial cartilage elements. 0 1997 Elsevier Science Ireland Ltd. All rights reserved

Expression of five frizzleds during zebrafish craniofacial development

Gene Expression Patterns, 2009

Wnt/Planar Cell Polarity (PCP) signaling is critical for proper animal development. While initially identified in Drosophila, this pathway is also essential for the proper development of vertebrates. Zebrafish mutants, defective in the Wnt/PCP pathway, frequently display defects in convergence and extension gastrulation movements and additional later abnormalities including problems with craniofacial cartilage morphogenesis. Although multiple Frizzled (Fzd) homologues, Wnt receptors, were identified in zebrafish, it is unknown which Fzd plays a role in shaping the early larvae head skeleton. In an effort to determine which Frizzleds are involved in this process, we analyzed the expression of five zebrafish frizzled homologues fzd2, 6, 7a, 7b, and 8a from 2-4 days post fertilization (dpf). During the analyzed developmental time points fzd2 and fzd6 are broadly expressed throughout the head, while the expression of fzd7a, 7b and 8a is much more restricted. Closer examination revealed that fzd7b is expressed in the neural crest and the mesodermal core of the pharyngeal arches and in the chondrocytes of newly stacked craniofacial cartilage elements. However, fzd7a is only expressed in the neural crest of the pharyngeal arches and fzd8a is expressed in the pharyngeal endoderm.

Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development

Development, 2008

Skeletal syndromes are among the most common birth defects. Vertebrate skeletogenesis involves two major cell types: cartilage-forming chondrocytes and bone-forming osteoblasts. In vitro, both are under the control of retinoic acid (RA), but its exact in vivo effects remained elusive. Here, based on the positional cloning of the dolphin mutation, we have studied the role of the RA-oxidizing enzyme Cyp26b1 during cartilage and bone development in zebrafish. cyp26b1 is expressed in condensing chondrocytes as well as in osteoblasts and their precursors. cyp26b1 mutants and RA-treated wild-type fish display a reduction in midline cartilage and the hyperossification of facial and axial bones, leading to fusions of vertebral primordia, a defect not previously described in the context of RA signaling. Fusions of cervical vertebrae were also obtained by treating mouse fetuses with the specific Cyp26 inhibitor R115866. Together with data on the expression of osteoblast markers, our results i...

Fgf8a mutation affects craniofacial development and skeletal gene expression in zebrafish larvae

Biology Open, 2019

Craniofacial development is tightly regulated and therefore highly vulnerable to disturbance by genetic and environmental factors. Fibroblast growth factors (FGFs) direct migration, proliferation and survival of cranial neural crest cells (CNCCs) forming the human face. In this study, we analyzed bone and cartilage formation in the head of 5 dpf fgf8ati282 zebrafish larvae and assessed gene expression levels for 11 genes involved in these processes. In addition, in situ hybridization was performed on 8 and 24 hpf larvae (fgf8a, dlx2a, runx2a, col2a1a). A significant size reduction of 8 out of 9 craniofacial cartilage structures was found in homozygous mutant (6-36%, p<0.01) and heterozygous (7-24%, p<0.01) larvae. Also, 9 mineralized structures were not observed in all or part of the homozygous (0-71%, p<0.0001) and heterozygous (33-100%, p<0.0001) larvae. In homozygote mutants, runx2a and sp7 expression was upregulated compared to wildtypes, presumably to compensate for...

The retinoic acid metabolising gene, CYP26B1, patterns the cartilaginous cranial neural crest in zebrafish

The International Journal of Developmental Biology, 2007

We have investigated the function of the retinoic acid metabolising enzyme, CYP26B1, by administering an antisense morpholino oligonucleotide to zebrafish embryos. The result was an alteration in the morphology of the embryo in those regions which express the gene, namely an embryo with a smaller head, correspondingly smaller hindbrain rhombomeres and severely reduced numbers of vagal brachiomotor neurons. Most strikingly, these embryos had defective or absent jaw cartilages implying a role for this enzyme in patterning or migration of the neural crest cells which give rise to this tissue type. In order to determine whether this phenotype resembles that of excess retinoic acid or a deficiency of retinoic acid, we compared the jaw defects following retinoic acid treatment or DEAB treatment, the latter being an inhibitor of retinoic acid synthesis. The effects of the inhibitor rather than excess retinoic acid most closely phenocopied the jaw defects seen with the Cyp26B1 morpholino which suggests that, at least in the zebrafish embryo, the action of CYP26B1 in the neural crest may not be simply to catabolise all-trans-RA.

Zebrafishacvr2a andacvr2b exhibit distinct roles in craniofacial development

Developmental Dynamics, 2005

To examine the roles of activin type II receptor signaling in craniofacial development, full-length zebrafish acvr2a and acvr2b clones were isolated. Although ubiquitously expressed as maternal mRNAs and in early embryogenesis, by 24 hr postfertilization (hpf), acvr2a and acvr2b exhibit restricted expression in neural, hindbrain, and neural crest cells (NCCs). A morpholino-based targeted protein depletion approach was used to reveal discrete functions for each acvr2 gene product. The acvr2a morphants exhibited defects in the development of most cranial NCC-derived cartilage, bone, and pharyngeal tooth structures, whereas acvr2b morphant defects were largely restricted to posterior arch structures and included the absence and/or aberrant migration of posterior NCC streams, defects in NCC-derived posterior arch cartilages, and dysmorphic pharyngeal tooth development. These studies revealed previously uncharacterized roles for acvr2a and acvr2b in hindbrain and NCC patterning, in NCC derived pharyngeal arch cartilage and joint formation, and in tooth development.

Mutations affecting craniofacial development in zebrafish

Development (Cambridge, England), 1996

In a large-scale screen for mutations affecting embryogenesis in zebrafish, we identified 48 mutations in 34 genetic loci specifically affecting craniofacial development. Mutants were analyzed for abnormalities in the cartilaginous head skeleton. Further, the expression of marker genes was studied to investigate potential abnormalities in mutant rhombencephalon, neural crest, and pharyngeal endoderm. The results suggest that the identified mutations affect three distinct aspects of craniofacial development. In one group, mutations affect the overall pattern of the craniofacial skeleton, suggesting that the genes are involved in the specification of these elements. Another large group of mutations affects differentiation and morphogenesis of cartilage, and may provide insight into the genetic control of chondrogenesis. The last group of mutations leads to the abnormal arrangement of skeletal elements and may uncover important tissue-tissue interactions underlying jaw development.

An essential role for zebrafish Fgfrl1 during gill cartilage development

Mechanisms of Development, 2006

The vertebrate craniofacial skeleton develops via a complex process involving signaling cascades in all three germ layers. Fibroblast growth factor (FGF) signaling is essential for several steps in pharyngeal arch development. In zebrafish, Fgf3 and Fgf8 in the mesoderm and hindbrain have an early role to pattern the pouch endoderm, influencing craniofacial integrity. Endodermal FGF signaling is required for the differentiation and survival of postmigratory neural crest cells that form the pharyngeal skeleton. We identify a novel role for zebrafish Fgf receptor-like 1a (Fgfrl1a) that is indispensable during gill cartilage development. We show that depletion of Fgfrl1a is sufficient to abolish cartilage derivatives of the ceratobranchials. Using an Fgfrl1a-deficient model, we analyzed expression of genes critical for chondrogenesis in the different compartments of the developing pharyngeal arch. Fgfrl1a-depleted animals demonstrate typical neural crest specification and migration to populate the arch primordia as well as normal pouch segmentation. However, in the absence of Fgfrl1a, larvae fail to express the transcription factor glial cells missing 2 (gcm2), a gene necessary for cartilage and gill filament formation, in the ectodermal lining of the branchial arches. In addition, two transcription factors essential for chondrogenesis, sox9a and runx2b, fail to express within the mesenchymal condensations of the branchial arches. A duplicate zebrafish gene, fgfrl1b, has now been identified. We show that Fgfrl1b is also required for proper formation of all ventral cartilage elements and acts cooperatively with Fgfrl1a during gill cartilage formation.

Duplicated zebrafish co-orthologs of parathyroid hormone-related peptide (PTHrP, Pthlh) play different roles in craniofacial skeletogenesis

Journal of Endocrinology, 2012

In mammals, parathyroid hormone-related peptide (PTHrP, alias PTH-like hormone (Pthlh)) acts as a paracrine hormone that regulates the patterning of cartilage, bone, teeth, pancreas, and thymus. Beyond mammals, however, little is known about the molecular genetic mechanisms by which Pthlh regulates early development. To evaluate conserved pathways of craniofacial skeletogenesis, we isolated two Pthlh co-orthologs from the zebrafish (Danio rerio) and investigated their structural, phylogenetic, and syntenic relationships, expression, and function. Results showed that pthlh duplicates originated in the teleost genome duplication. Zebrafish pthlha and pthlhb were maternally expressed and showed overlapping and distinct zygotic expression patterns during skeletal development that mirrored mammalian expression domains. To explore the regulation of duplicated pthlh genes, we studied their expression patterns in mutants and found that both sox9a and sox9b are upstream of pthlha in arch and fin bud cartilages, but only sox9b is upstream of pthlha in the pancreas. Morpholino antisense knockdown showed that pthlha regulates both sox9a and sox9b in the pharyngeal arches but not in the brain or otic vesicles and that pthlhb does not regulate either sox9 gene, which is likely related to its highly degraded nuclear localization signal. Knockdown of pthlha but not pthlhb caused runx2b overexpression in craniofacial cartilages and premature bone mineralization. We conclude that in normal cartilage development, sox9 upregulates pthlh, which downregulates runx2, and that the duplicated nature of all three of these genes in zebrafish creates a network of regulation by different co-orthologs in different tissues.

Knockdown of vitamin D receptor genes impairs touch-evoked escape behavior in zebrafish

Experimental Results, 2021

Vitamin D is a steroid hormone well-known for its role in calcium homeostasis and bone health. Biological actions of vitamin D are mediated through the vitamin D receptor (VDR) present in various cells and tissues. Vitamin D has been implicated in multiple aspects of neuromuscular functions. This study aimed to investigate the role of VDR signaling during early stage of locomotor development utilizing a gene knockdown approach. Zebrafish larvae deficient in VDR showed severe motor impairment and no obvious response to touch. These results indicate that VDR signaling is indispensable for the correct neuromuscular development and touch-evoked escape swimming behavior in zebrafish.