Application of reflectance spectroscopy to identify maize genotypes and aflatoxin levels in single kernels (original) (raw)

Spectroscopy is a rapid, non-destructive, and low-cost analytical technique that has the potential to complement more resource-intensive analytical methods. We explored the use of spectral methods to differentiate maize genotypes and assess aflatoxin (AF) contamination in maize kernels. We compared the performance of two instruments: a research-grade ultraviolet-visible-near infrared (UV-Vis-NIR) spectrometer that measures reflectance from 304 -1,085 nm, and a miniaturised NIR spectrometer that measures reflectance from 740-1,070 nm. Both systems were used to predict AF levels in maize kernels from a single genotype and across 10 genotypes, and to predict genotype for the latter. A partial least square discriminant analysis model was trained on 70% of the kernels and tested on the remaining 30%. The classification accuracy for 10 maize genotypes was 71-72% using the UV-Vis-NIR instrument on 1,170 kernels, and 65-66% using the NIR device on 740 kernels. The classification accuracy fo...