Investigation of Fractional Nonlinear Regularized Long-Wave Models via Novel Techniques (original) (raw)
The main goal of the current work is to develop numerical approaches that use the Yang transform, the homotopy perturbation method (HPM), and the Adomian decomposition method to analyze the fractional model of the regularized long-wave equation. The shallow-water waves and ion-acoustic waves in plasma are both explained by the regularized long-wave equation. The first method combines the Yang transform with the homotopy perturbation method and He’s polynomials. In contrast, the second method combines the Yang transform with the Adomian polynomials and the decomposition method. The Caputo sense is applied to the fractional derivatives. The strategy’s effectiveness is shown by providing a variety of fractional and integer-order graphs and tables. To confirm the validity of each result, the technique was substituted into the equation. The described methods can be used to find the solutions to these kinds of equations as infinite series, and when these series are in closed form, they gi...