The structure of sodium silicate glass from neutron diffraction and modeling of oxygen-oxygen correlations (original) (raw)
Abstract
Neutron diffraction is arguably the most reliable experimental method for the determination of the bond length distribution and coordination number of ions in glasses. 1 For a cation A in an oxide glass, this is achieved by analysis of the first A-O peak in the neutron correlation function. One of the main difficulties for this analysis can arise from the overlap between the A-O peak and the first O-O peak, which arises from distances between pairs of oxygen atoms in the basic structural units. We show here that O-O coordination numbers can be calculated, even for complex glasses, provided that the environment of the glass network forming cations is known. The O-O coordination numbers can then be used as a basis for taking the O-O peak into account so that the bond length distribution of an ion can be revealed.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (85)
- Hannon AC. Neutron diffraction techniques for structural stud- ies of glasses. In: Affatigato M, editor. Modern glass characteri- zation. New York: Wiley; 2015. p. 158-240.
- Elliott SR. Physics of amorphous materials, 1st edn. Harlow: Longman; 1984.
- Wilkinson CJ, Potter AR, Welch RS, Bragatto C, Zheng Q, Bauchy M, et al. Topological origins of the mixed alkali effect in glass. J Phys Chem B. 2019;123:7482-9.
- Bødker MS, Youngman RE, Mauro JC, Smedskjaer MM. Mixed alkali effect in silicate glass structure: viewpoint of 29 Si nuclear magnetic resonance and statistical mechanics. J Phys Chem B. 2020;124:10292-9.
- Sinclair RN, Wright AC. Neutron scattering from vitreous silica I. The total cross-section. J Non-Cryst Solids. 1983;57:447-64.
- Johnson PAV, Wright AC, Sinclair RN. Neutron scattering from vitreous silica II. Twin-axis diffraction experiments. J Non- Cryst Solids. 1983;58:109-30.
- Wright AC, Sinclair RN. Neutron scattering from vitreous silica III. Elastic diffraction. J Non-Cryst Solids. 1985;76:351-68.
- Grimley DI, Wright AC, Sinclair RN. Neutron scattering from vitreous silica IV. Time-of-flight diffraction. J Non-Cryst Solids. 1990;119:49-64.
- Tischendorf B, Ma C, Hammersten E, Venhuizen P, Peters M, Affatigato M, et al. The density of alkali silicate glasses over wide compositional ranges. J Non-Cryst Solids. 1998;239: 197-202.
- Doweidar H, Feller S, Affatigato M, Tischendorf B, Ma C, Hammarsten E. Density and molar volume of extremely modified alkali silicate glasses. Phys Chem Glasses. 1999;40: 339-44.
- Barrow N, Packard M, Vaishnav S, Wilding MC, Bingham PA, Hannon AC, et al. MAS-NMR studies of carbonate retention in a very wide range of Na 2 O-SiO 2 glasses. J Non-Cryst Solids. 2020;534:119958.
- Jellison GE Jr, Feller SA, Bray PJ. A re-examination of the frac- tion of 4-coordinated boron atoms in the lithium borate glass system. Phys Chem Glasses. 1978;19:52-3.
- Hannon AC, Grimley DI, Hulme RA, Wright AC, Sinclair RN. Boroxol groups in vitreous boron oxide: new evidence from neutron diffraction and inelastic neutron scattering studies. J Non-Cryst Solids. 1994;177:299-316.
- Hannon AC, Holland D. A parameterisation for the composition-dependence of N 4 in binary borate glasses. Phys Chem Glasses Eur J Glass Sci Technol B. 2006;47:449-54.
- Paterson AL, Hannon AC, Werner-Zwanziger U, Zwanziger JW. Structural differences between the glass and crystal phases of LaBGeO 5 : neutron diffraction and NMR spectroscopy. J Phys Chem C. 2018;122:20963-80.
- Hannon AC. Bonding and structure in network glasses. J Non- Cryst Solids. 2016;451:56-67.
- Hannon AC, Parker JM. The use of bond-valence parameters in interpreting glass diffraction results. Phys Chem Glasses. 2002;43C:6-12.
- Brown ID. The chemical bond in inorganic chemistry. The bond valence model, 1st edn. Oxford: Oxford University Press; 2002.
- Brown ID. Recent developments in the methods and applica- tions of the bond valence model. Chem Rev. 2009;109:6858-919.
- Brown ID, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Cryst B. 1985;41:244-7.
- Brese NE, O'Keeffe M. Bond-valence parameters for solids. Acta Cryst B. 1991;47:192-7.
- Adams S. Relationship between bond valence and bond softness of alkali halides and chalcogenides. Acta Cryst B. 2001;57:278-87.
- Gagné OC, Hawthorne FC. Comprehensive derivation of bond- valence parameters for ion pairs involving oxygen. Acta Cryst B. 2015;71:562-78.
- Pauling L. The nature of the chemical bond, 3rd edn. Ithaca: Cornell University Press; 1960.
- Allmann R. Beziehungen zwischen Bindungslangen und Bindungsstarken in Oxidstrukturen. Monatsh Chem. 1975;106: 779-93.
- Brown ID. Chemical and steric constraints in inorganic solids. Acta Cryst B. 1992;48:553-72.
- Urusov VS. Theoretical analysis and empirical manifestation of the distortion theorem. Z Kristallogr. 2003;218:709.
- Gagné OC, Hawthorne FC. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals. Acta Cryst B. 2016;72:602-25.
- Vaishnav S, Hannon AC, Barney ER, Bingham PA. Neutron dif- fraction and Raman studies of the incorporation of sulfate in silicate glasses. J Phys Chem C. 2020;124:5409-24.
- Hannon AC. Results on disordered materials from the GEneral Materials diffractometer, GEM, at ISIS. Nucl Instrum Meth A. 2005;551:88-107.
- Hannon AC. PFIT correlation function fitting software. http:// www.alexh annon.co.uk/.
- McDonald WS, Cruickshank DWJ. A reinvestigation of the structure of sodium metasilicate, Na 2 SiO 3 . Acta Cryst. 1967;22:37-43.
- Williamson J, Glasser FP. Crystallisation of Na 2 O.2SiO 2 -SiO 2 glasses. Phys Chem Glasses. 1966;7:127-+.
- Wright AF, Lehmann MS. The structure of quartz at 25 and 590ºC determined by neutron diffraction. J Solid State Chem. 1981;36:371-80.
- Kahlenberg V, Marler B, Muñoz Acevedo JC, Patarin J. Ab in- itio crystal structure determination of Na 2 Si 3 O 7 from conven- tional powder diffraction data. Solid State Sci. 2002;4:1285-92.
- Krüger H, Kahlenberg V, Kaindl R. Structural studies on Na 6 Si 8 O 19 -a monophyllosilicate with a new type of layered sili- cate anion. Solid State Sci. 2005;7:1390-6.
- Pant AK, Cruickshank DWJ. The crystal structure of α- Na 2 Si 2 O 5 . Acta Cryst B. 1968;24:13-9.
- Pant AK. A reconsideration of the crystal structure of β- Na 2 Si 2 O 5 . Acta Cryst B. 1968;24:1077-83.
- Kahlenberg V, Langreiter T, Arroyabe E. Na 6 Si 2 O 7 -The missing structural link among alkali pyrosilicates. Z Anorg Allg Chem. 2010;636:1974-9.
- Baur WH, Halwax E, Völlenkle H. Comparison of the crystal structures of sodium orthosilicate, Na 4 SiO 4 , and sodium or- thogermanate Na 4 GeO 4 . Monatsh Chem. 1986;117:793-7.
- McAdam A, Jost KH, Beagley B. Refinement of the struc- ture of sodium Kurrol salt (NaPO 3 ) x , type A. Acta Cryst B. 1968;24:1621-2.
- Robinson K, Gibbs GV, Ribbe PH. Quadratic elongation- quantitative measure of distortion in coordination polyhedra. Science. 1971;172:567-70.
- Maekawa H, Maekawa T, Kawamura K, Yokokawa T. The structural groups of alkali silicate glasses determined from 29 Si MAS-NMR. J Non-Cryst Solids. 1991;127:53-64.
- Stebbins JF. Anionic speciation in sodium and potassium silicate glasses near the metasilicate ([Na, K ] 2Si O 3) compo- sition: 2 9Si, 1 7O, and 2 3Na MAS NMR. J Non-Cryst Solids: X. 2020;6:100049.
- Hannon AC. Neutron diffraction database, http://www.alexh annon.co.uk/.
- Warren BE, Biscoe J. Fourier analysis of X-ray patterns of soda- silica glass. J Am Ceram Soc. 1938;21:259-65.
- Nesbitt HW, Henderson GS, Bancroft GM, Ho R. Experimental evidence for Na coordination to bridging oxygen in Na- silicate glasses: implications for spectroscopic studies and for the modified random network model. J Non-Cryst Solids. 2015;409:139-48.
- Du J, Cormack AN. The medium range structure of sodium silicate glasses: a molecular dynamics simulation. J Non-Cryst Solids. 2004;349:66-79.
- Mountjoy G. The local atomic environment of oxygen in sili- cate glasses from molecular dynamics. J Non-Cryst Solids. 2007;353:1849-53.
- Soules TF. Molecular dynamic calculation of the structure of sodium-silicate glasses. J Chem Phys. 1979;71:4570-8.
- Newell RG, Feuston BP, Garofalini SH. The structure of sodium trisilicate glass via molecular dynamics employing three-body potentials. J Mater Res. 1989;4:434-9.
- Huang C, Cormack AN. The structure of sodium silicate glass. J Chem Phys. 1990;93:8180-6.
- Huang C, Cormack AN. Structural differences and phase separation in alkali silicate glasses. J Chem Phys. 1991;95: 3634-42.
- Cormack AN, Cao Y. Molecular dynamics simulation of silicate glasses. Molecular Engineering. 1996;6:183-227.
- Meyer A, Horbach J, Kob W, Kargl F, Schober H. Channel for- mation and intermediate range order in sodium silicate melts and glasses. Phys Rev Lett. 2004;93:4.
- Tilocca A, de Leeuw NH. Structural and electronic proper- ties of modified sodium and soda-lime silicate glasses by Car-Parrinello molecular dynamics. J Mater Chem. 2006;16: 1950-5.
- Pota M, Pedone A, Malavasi G, Durante C, Cocchi M, Menziani MC. Molecular dynamics simulations of sodium silicate glasses: optimization and limits of the computational proce- dure. Comput Mater Sci. 2010;47:739-51.
- Machacek J, Gedeon O, Liska M. The MD study of mixed alkali effect in alkali silicate glasses. Phys Chem Glasses Eur J Glass Sci Technol B. 2010;51:65-8.
- Johnson JA, Benmore CJ, Holland D, Du J, Beuneu B, Mekki A. Influence of rare-earth ions on SiO 2 -Na 2 O-RE 2 O 3 glass struc- ture. J Phys Condens Matter. 2011;23:065404.
- Jabraoui H, Vaills Y, Hasnaoui A, Badawi M, Ouaskit S. Effect of sodium oxide modifier on structural and elastic properties of silicate glass. J Phys Chem B. 2016;120:13193-205.
- Li X, Song WY, Yang K, Krishnan NMA, Wang B, Smedskjaer MM, et al. Cooling rate effects in sodium silicate glasses: bridg- ing the gap between molecular dynamics simulations and ex- periments. J Chem Phys. 2017;147.
- Yu Y, Wang B, Wang M, Sant G, Bauchy M. Reactive molecu- lar dynamics simulations of sodium silicate glasses-toward an improved understanding of the structure. Int J Appl Glass Sci. 2017;8:276-84.
- Deng L, Urata S, Takimoto Y, Miyajima T, Hahn SH, van Duin ACT, et al. Structural features of sodium silicate glasses from re- active force field-based molecular dynamics simulations. J Am Ceram Soc. 2020;103:1600-14.
- Zhou Q, Du T, Guo LJ, Smedskjaer MM, Bauchy M. New in- sights into the structure of sodium silicate glasses by force- enhanced atomic refinement. J Non-Cryst Solids. 2020;536.
- Kapoutsis JA, Kamitsos EI, Chryssikos GD, Yiannopoulos YD, Patsis AP. Alkali sites in silicate glasses. Chim Chron, New Ser. 1994;23:341-6.
- Hannon AC. XTAL: a program for calculating interatomic distances and coordination numbers for model structures. Rutherford appleton laboratory report RAL-93-063. Rutherford Appleton Laboratory; 1993.
- Hannon AC. XTAL structural modelling software. http://www. alexh annon.co.uk/.
- Clare AG, Wright AC, Sinclair RN. A comparison of the structural role of Na + network modifying cations in sodium silicate and so- dium fluoroberyllate glasses. J Non-Cryst Solids. 1997;213:321-4.
- Wilding M, Badyal Y, Navrotsky A. The local environment of trivalent lanthanide ions in sodium silicate glasses: a neu- tron diffraction study using isotopic substitution. J Non-Cryst Solids. 2007;353:4792-800.
- Barney ER, Hannon AC, Holland D. Short range order and dy- namics in crystalline α-TeO 2 . J Phys Chem C. 2012;116:3707-18.
- Fleet ME. Sodium tetrasilicate: a complex high-pressure frame- work silicate (Na 6 Si 3 Si 9 O 27 ). Am Miner. 1996;81:1105-10.
- Fleet ME, Henderson GS. Sodium trisilicate: a new high-pressure silicate structure (Na 2 Si[Si 2 O 7 ]). Phys Chem Min. 1995;22:383-6.
- Fleet ME. Sodium heptasilicate: a high-pressure silicate with six-membered rings of tetrahedra interconnected by SiO 6 octa- hedra: (Na 8 Si Si 6 O 18 ). Am Miner. 1998;83:618-24.
- Hannon AC, Di Martino D, Santos LF, Almeida RM. Ge-O coordination in cesium germanate glasses. J Phys Chem B. 2007;111:3342-54.
- Lacy ED. Aluminium in glasses and in melts. Phys Chem Glasses. 1963;4:234-8.
- Macdowell JF, Beall GH. Immiscibility and crystallization in Al 2 O 3 -SiO 2 glasses. J Am Ceram Soc. 1969;52:17-25.
- Lukesh JS. The distribution of metallic atoms in two-component glasses. Proc Natl Acad Sci USA. 1942;28:277-81.
- Wright AC. The structure of amorphous solids by x-ray and neutron diffraction. Adv Struc Res Diffr Meth. 1974;5:1-120.
- Wright AC, Clare AG, Bachra B, Sinclair RN, Hannon AC, Vessal B. Neutron diffraction studies of silicate glasses. Trans Am Cryst Assoc. 1991;27:239-53.
- Wright AC, Clare AG, Bachra B, Hannon AC, Sinclair RN, Vessal B. A neutron diffraction study of the structure of alkali silicate glasses. Bol Soc Esp Ceram. 1992;31-C,3:77-82.
- Clare AG, Bachra B, Wright AC, Sinclair RN. The structure of sodium silicate glasses by neutron diffraction. In: Pye LD, Lacourse WC, Stevens HJ, editor. Physics of non-crystalline sol- ids. London: Taylor & Francis Ltd, 1992; p. 48-52.
- Alderman OLG. The structure of vitreous binary oxides: silicate, germanate and plumbite networks. PhD. Thesis, University of Warwick, 2013.
- Alderman OLG, Hannon AC, Holland D, Feller S, Lehr G, Vitale A, et al. Lone-pair distribution and plumbite network formation in high lead silicate glass, 80PbO.20SiO 2 . Phys Chem Chem Phys. 2013;15:8506-19.
- Greaves GN, Fontaine A, Lagarde P, Raoux D, Gurman SJ. Local structure of silicate glasses. Nature. 1981;293:611-6.
- Mazzara C, Jupille J, Flank AM, Lagarde P. Stereochemical order around sodium in amorphous silica. J Phys Chem B. 2000;104:3438-45.