Photodynamic inactivation for controlling Candida albicans infections (original) (raw)

Antimicrobial photodynamic therapy: an effective alternative approach to control fungal infections

Frontiers in microbiology, 2015

Skin mycoses are caused mainly by dermatophytes, which are fungal species that primarily infect areas rich in keratin such as hair, nails, and skin. Significantly, there are increasing rates of antimicrobial resistance among dermatophytes, especially for Trichophyton rubrum, the most frequent etiologic agent worldwide. Hence, investigators have been developing new therapeutic approaches, including photodynamic treatment. Photodynamic therapy (PDT) utilizes a photosensitive substance activated by a light source of a specific wavelength. The photoactivation induces cascades of photochemicals and photobiological events that cause irreversible changes in the exposed cells. Although photodynamic approaches are well established experimentally for the treatment of certain cutaneous infections, there is limited information about its mechanism of action for specific pathogens as well as the risks to healthy tissues. In this work, we have conducted a comprehensive review of the current knowle...

A comprehensive overview of photodynamic therapy in the treatment of superficial fungal infections of the skin

Journal of Photochemistry and Photobiology B: Biology, 2005

Photodynamic therapy (PDT) is a two-step procedure, involving the topical or systemic administration of a photosensitizer followed by selective illumination of the target lesion with visible light, which triggers the oxidative photodamage and subsequent cell death within the target area. In dermatology, PDT has proven to be a useful treatment for a variety of malignant tumors and selected inflammatory diseases. In addition, PDT of several infective viral or bacterial skin diseases has been investigated. These investigations grew out of the positive findings of studies of another important use of PDT: that of disinfection of blood products.

New Applications of Photodynamic Therapy in the Management of Candidiasis

Journal of Fungi

The most important aetiological agent of opportunistic mycoses worldwide is Candida spp. These yeasts can cause severe infections in the host, which may be fatal. Isolates of Candida albicans occur with greater frequency and variable resistance patterns. Photodynamic therapy (PDT) has been recognised as an alternative treatment to kill pathogenic microorganisms. PDT utilises a photosensitizer, which is activated at a specific wavelength and oxygen concentration. Their reaction yields reactive oxygen species that kill the infectious microorganism. A systematic review of new applications of PDT in the management of candidiasis was performed. Of the 222 studies selected for in-depth screening, 84 were included in this study. All the studies reported the antifungal effectiveness, toxicity and dosimetry of treatment with antimicrobial PDT (aPDT) with different photosensitizers against Candida spp. The manuscripts that are discussed reveal the breadth of the new applications of aPDT again...

Effect of photodynamic therapy with two photosensitizers on Candida albicans

Journal of Photochemistry and Photobiology B: Biology, 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Highlights of this study are the application of in In vivo and reduction of pathogen microorganisms in oral cavity with use of this technic.

The in vitro effect of antimicrobial photodynamic therapy on Candida and Staphylococcus biofilms

TURKISH JOURNAL OF MEDICAL SCIENCES

Background/aim: This study was designed to evaluate the effect of antimicrobial photodynamic treatment (APDT) in a biofilm model using combinations of various dyes (rose bengal, riboflavin, and methylene blue) as photosensitizers and light sources (LED and UVA) against staphylococcal and candidal biofilms. Materials and methods: Sterile microtiter plates were used for the development and quantification of the biofilms. APDT was carried out using combinations of the light sources and dyes. The percentage of the growth inhibition was then calculated using a spectrophotometer. The broth media in the wells were aspirated, wells were stained with crystal violet, and optical density values were measured spectrophotometrically. SEM analysis of the impact of APDT on bacterial and fungal biofilms was also performed. Results: The experiments showed that the most efficacious combination was red LED + methylene blue against both staphylococcal and candidal biofilms. A marked inhibition (45.4%) was detected on both C. albicans and C. parapsilosis biofilms. Red LED + methylene blue was also effective on S. aureus and S. epidermidis biofilms. SEM images suggested that the number of adherent cells and biofilm mass were markedly reduced after APDT treatment. Conclusion: Although the results of this study indicated the in vitro efficacy of APDT, it might also be a promising technique for the control of biofilm growth within intravenous catheters.

Blue Dye and Red Light, a Dynamic Combination for Prophylaxis and Treatment of Cutaneous Candida albicans Infections in Mice

Antimicrobial Agents and Chemotherapy, 2011

The objective of this study was to investigate photodynamic therapy (PDT), using blue dye and red light, for prophylaxis and treatment of cutaneous Candida albicans infections in mice. A mouse model of skin abrasion infected with C. albicans was developed by inoculating wounds measuring 1.2 cm by 1.2 cm with 10 6 or 10 7 CFU. The use of a luciferase-expressing strain of C. albicans allowed real-time monitoring of the extent of infection in mice noninvasively through bioluminescence imaging. The phenothiazinium salts toluidine blue O (TBO), methylene blue (MB), and new methylene blue (NMB) were compared as photosensitizers (PS) for the photodynamic inactivation of C. albicans in vitro. PDT in vivo was initiated either at 30 min or at 24 h after fungal inoculation to investigate the efficacies of PDT for both prophylaxis and treatment of infections. Light at 635 ؎ 15 nm or 660 ؎ 15 nm was delivered with a light dose of 78 J/cm 2 (for PDT at 30 min postinfection) or 120 J/cm 2 (for PDT at 24 h postinfection) in multiple exposures with bioluminescence imaging taking place after each exposure of light. In vitro studies showed that NMB was superior to TBO and MB as the PS in the photodynamic inactivation of C. albicans. The efficacy of PDT was related to the ratio of PS concentration to fungal cell density. PDT in vivo initiated either at 30 min or at 24 h postinfection significantly reduced C. albicans burden in the infected mouse skin abrasion wounds. These data suggest that PDT is a viable approach for prophylaxis and treatment of cutaneous C. albicans infections.

Antimicrobial Photodynamic Inactivation Inhibits Candida albicans Virulence Factors and Reduces In Vivo Pathogenicity

Antimicrobial Agents and Chemotherapy, 2013

Updated information and services can be found at: These include: REFERENCES http://aac.asm.org/content/57/1/445#ref-list-1 at: This article cites 53 articles, 17 of which can be accessed free CONTENT ALERTS more» articles cite this article), Receive: RSS Feeds, eTOCs, free email alerts (when new http://journals.asm.org/site/misc/reprints.xhtml Information about commercial reprint orders: http://journals.asm.org/site/subscriptions/ To subscribe to to another ASM Journal go to: on June 11, 2013 by Harvard Libraries

Photodynamic Therapy Combined with Antibiotics or Antifungals against Microorganisms That Cause Skin and Soft Tissue Infections: A Planktonic and Biofilm Approach to Overcome Resistances

Pharmaceuticals, 2021

The present review covers combination approaches of antimicrobial photodynamic therapy (aPDT) plus antibiotics or antifungals to attack bacteria and fungi in vitro (both planktonic and biofilm forms) focused on those microorganisms that cause infections in skin and soft tissues. The combination can prevent failure in the fight against these microorganisms: antimicrobial drugs can increase the susceptibility of microorganisms to aPDT and prevent the possibility of regrowth of those that were not inactivated during the irradiation; meanwhile, aPDT is effective regardless of the resistance pattern of the strain and their use does not contribute to the selection of antimicrobial resistance. Additive or synergistic antimicrobial effects in vitro are evaluated and the best combinations are presented. The use of combined treatment of aPDT with antimicrobials could help overcome the difficulty of fighting high level of resistance microorganisms and, as it is a multi-target approach, it coul...