A Novel PCR-Based Approach for Accurate Identification of Vibrio parahaemolyticus (original) (raw)
Related papers
Molecular and Cellular Probes, 2013
Vibrio parahaemolyticus is a significant cause of human gastrointestinal disorders worldwide, transmitted primarily by ingestion of raw or undercooked contaminated seafood. In this study, a multiplex PCR assay for the detection and differentiation of V. parahaemolyticus strains was developed using primer sets for a species-specific marker, groEL, and two virulence markers, tdh and trh. Multiplex PCR conditions were standardised, and extracted genomic DNA of 70 V. parahaemolyticus strains was used for identification. The sensitivity and efficacy of this method were validated using artificially inoculated shellfish and seawater. The expected sizes of amplicons were 510 bp, 382 bp, and 171 bp for groEL, tdh and trh, respectively. PCR products were sufficiently different in size, and the detection limits of the multiplex PCR for groEL, tdh and trh were each 200 pg DNA. Specific detection and differentiation of virulent from non-virulent strains in shellfish homogenates and seawater was also possible after artificial inoculation with various V. parahaemolyticus strains. This newly developed multiplex PCR is a rapid assay for detection and differentiation of pathogenic V. parahaemolyticus strains, and could be used to prevent disease outbreaks and protect public health by helping the seafood industry maintain a safe shellfish supply.
Electronic Journal of Biotechnology, 2015
Background: The surveillance of Vibrio parahaemolyticus in the Chilean coast has been mainly performed by multiplex PCR amplification of three different hemolysin genes, which are specie-specific virulence factors. These genes are also employed in the determination of V. parahaemolyticus pathogenic load in seafood and for characterization of pathogenic strains associated to diarrhea cases in human. During environmental surveillance that we performed every summer, we occasionally observed a thermolabile hemolysin (tlh) PCR product of a slightly smaller size than expected, which was coincident with low loads of V. parahaemolyticus in the environment. In order to understand this observation, we probed the specificity of tlh primers for the detection of V. parahaemolyticus at different bacterial loads and DNA concentrations. Results: Primers used for the detection of V. parahaemolyticus specific tlh amplified a slightly smaller tlh gene, which is found in Vibrio alginolyticus and other related strains. These amplicons were observed when V. parahaemolyticus was absent or in undetectable loads in the environment. Conclusions: Surveillance of V. parahaemolyticus using tlh primers can be imprecise because amplification of a V. parahaemolyticus specific marker in V. alginolyticus and other related strains occurs. This situation complicates potentially the estimation of bacterial load in seafood, because do not ensure the correct identification of V. parahaemolyticus when his load is low. Additionally, it could complicate the tracking of outbreaks of V. parahaemolyticus infections, considering the genetic markers used would not be specie-specific.
Journal of Applied Microbiology, 2007
Aims: Multicentre evaluation of biochemical and molecular methods for the identification of Vibrio parahaemolyticus.Methods and Results: For the biochemical identification methods, API 20E and API 20NE and Alsina's scheme were evaluated in intra- and interlaboratory tests in order to determine the accuracy and concordance of each method. Both in intra- and interlaboratory tests, the Alsina's scheme showed the highest sensitivity (86% of correct identifications in the interlaboratory test). False-positive results were obtained by all methods (specificity was 95% for API 20E, 73% for API 20NE and 84% for Alsina's scheme) and concordance varied from 65% of API 20NE to 84% of API 20E. For the molecular identifications, polymerase chain reaction (PCR) for the detection of toxR gene, tl gene and pR72H fragment were tested on 30 strains by two laboratories. The PCR for toxR showed the highest inclusivity (96%), exclusivity (100%) and concordance (97%).Conclusions: Among the biochemical identification methods tested, the Alsina's scheme gave more reliable results; however, in order to avoid false-positive results, all the biochemical identifications should be confirmed by means of molecular methods.Significance and Impact of the Study: Availability of an efficient identification method of Vibrio parahaemolyticus to use in official control of fisheries products.
Journal of clinical microbiology, 2015
Vibrio parahaemolyticus sequence type (ST) 36 strains that are native to the Pacific Ocean have recently caused multi-state outbreaks of gastroenteritis linked to shellfish harvested from the Atlantic Ocean. Whole genome comparisons of 295 genomes of V. parahaemolyticus, including several traced to northeastern US sources, were used to identify diagnostic loci: one putatively encoding an endonuclease (prp), and two others potentially conferring O-antigenic properties (cps and flp). The combination of all three loci was present only in one clade of closely-related strains, of ST36, ST59 and one additional unknown sequence type. However, each locus was also identified outside this clade, with prp and flp occurring in only two non-clade isolates, and cps in four. Based on the distribution of these loci in sequenced genomes, prp could identify clade strains with >99% accuracy, but the addition of one more locus would increase accuracy to 100%. Oligonucleotide primers targeting prp an...
1999
The DNA colony hybridization test with the polynucleotide probe for Vibrio parahaemolyticus toxR gene was performed. All 373 strains of V. parahaemolyticus gave positive results, and the strains belonging to four other Vibrio species including Vibrio alginolyticus gave weakly positive results, suggesting that toxR sequence variation may reflect the phylogenetic relationships of Vibrio species. We then established a toxR-targeted PCR
Characterization of Vibrio parahaemolyticus strains isolated in Chile in 2005 and in 2007
Introduction: Vibrio (V.) parahaemolyticus has endemically established in Chilean sea shores, causing outbreaks every year, with an important number of cases. In order to know the genetic relationship, genotype dominance and antibiotic resistance of isolates obtained from two outbreaks, this study characterized 110 strains isolated from environmental and clinical samples in years 2005 and 2007 in Chile. Methodology: Genotyping was performed by determination of PFGE profiles, and pandemic group and integrons were screened by PCR. Antimicrobial susceptibility was studied by the disk diffusion method. Results: High antibiotic susceptibility frequency was found, mainly among 2007 isolates, except to ampicillin, cephalothin, cefoxitin, cefpodoxime, amikacin, streptomycin and kanamycin. Strains belonging to the pandemic group in clinical isolates account for 88% in 2005, decreasing to 66% in 2007 and among environmental isolates were detected in 20% of the strains from 2005, rising to 36% in 2007. In 2005, nine different PFGE profiles were identified, with 78% of the strains corresponding to a single clone. In 2007, sixteen different PFGE profiles were detected, with 61% of the strains included into a sole clone. The same clone was prevalent in both years. None of class 1, 2, 3 and SXT integrases genes was detected; however, the superintegron integrase gene (intIA) was present in almost all strains. Conclusions: These results suggest the persistence and dominance of a unique PFGE clone of V. parahaemolyticus during 2005 and 2007, and the absence of genetic elements that capture antibiotic resistance genes described in other species of Vibrio.
Epidemiology and Infection, 2006
During recent years a pandemic clone of Vibrio parahaemolyticus has emerged. Isolates of this clone are distributed among several serotypes, but are genotypically related. In the present study, a phenotyping method (biochemical fingerprinting) was used to characterize pandemic and non-pandemic isolates belonging to V. parahaemolyticus. It was found that the pandemic isolates showed a high level of phenotypic homogeneity and a majority of the pandemic isolates belonged to the same biochemical phenotype, whereas non-pandemic V. parahemolyticus isolates were more heterogeneous. In conclusion, biochemical fingerprinting of V. parahaemolyticus can be used as a first screening method to differentiate between pandemic and non-pandemic isolates of V. parahaemolyticus.