Stochastic resonance in MEMS capacitive sensors (original) (raw)
Abstract
Intrinsic noise processes are described by exponential autocorrelation function. Noise effects are modeled as parametric perturbations causing frequency fluctuation. Stochastic resonance occurs in MEMS capacitive sensors at sub-fundamental frequencies. Noise variance and correlation rate control stochastic motion and sensor response. Numerical case analyses of stochastic resonance in MEMS cantilever response are given.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (127)
- T. B. Jones, N. G. Nenadic, Electromechanics and MEMS, Cambridge University Press 2013, Chapters 5 and 6.
- M. Elwenspoek, R. Wiegerink, Mechanical Microsensors, Springer-Verlag: Berlin Heidelberg 2001, Chs. 9 and 10.
- K. M. Goeders, J. S. Colton, L. A. Bottomley, Microcantilevers: Sensing chemical interactions via mechanical motion, Chem. Rev. 108 (2008) 522-542.
- R. J. Wilfinger, D. S. Chhabra, P. H. Bardell, A frequency selective device utilizing the mechanical resonance of a silicon substrate, Proc. IEEE 54 (1966) 1589-1591.
- T. M. S. Heng, Trimming of microstrip circuits utilizing microcantilever air gaps, IEEE Trans. Microwave Theory and Techniques, 19 (1971) 652-654.
- C. T.-C. Nguyen, MEMS technology for timing and frequency control, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 (2007) 251-270.
- J. P. Cleveland, S. Manne, D. Bocek, P. K. Hansma, A non-destructive method for determining the spring constant of cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64 (1993) 403-405.
- Jeffrey L. Hutter and John Bechhoefer, Calibration of atomic-force microscope tips, Rev. Sci. Instrum. 64 (1993) 1868-1673.
- E. S. Kolesar, Electronic nerve agent detector, US patent no. 4549427 A, Oct 29, 1985.
- J. K. Gimzewski, Ch. Gerber, E. Meyer, R. R. Schlittler, Observation of a chemical reaction using a micromechanical sensor, Chem. Phys. Lett. 217 (1994) 589-594.
- T. Thundat, G. Y. Chen, R. J. Wannack, D. P. Allison, E. A. Wachter, Vapor detection using resonating microcantilevers, Anal. Chem. 1995, 67,519-521.
- T. Thundat, E. A. Wachter, Microcantilever sensor, US 5719324 A, Feb 17, 1998.
- M. Maute, S. Raible, F. E. Prins, D. P. Kern, H. Ulmer, U. Weimar, W. Göpel, Detection of volatile organic compounds (VOCs) with polymer-coated cantilevers, Sens. Actuators B 58 (1999) 505-511.
- R. Ghodssi, P. Lin, MEMS Materials and Processes Handbook, Springer, New York, 2011.
- A. N. Cleland, M. L. Roukes, Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl. Phys. Lett. 69 (1996) 2653-2655.
- P. Poncharal, Z. L. Wang, D. Ugarte, W. A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science 283 (1999) 1513-1516.
- H. G. Craighead, Nanoelectromechanical systems. Science 290 (2000) 1532-1535.
- K. L. Ekinci, M. L. Roukes, Nanoelectromechanical systems, Rev. Sci. Instrum. 76 (2005) 061101(12pp).
- L. A. Pinnaduwage, H.-F. Ji, T. Thundat, Moore's law in homeland defense: An integrated sensor platform based on silicon microcantilevers, IEEE Sensors J. 5 (2005) 774-785.
- C.S. Lam, A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry, Proc. IEEE Int. Ultrasonics Symposium, 2008, pp. 694-704.
- X. Li, H. Yu, X. Gan, X. Xia, P. Xu, J. Li, M. Liu, Y. Li, Integrated MEMS/NEMS resonant cantilevers for ultrasensitive biological detection, J. Sensors, vol. 2009, Article ID 637874 (10 pp).
- N. Yazdi, F. Ayazi, K. Najafi, Micromachined inertial sensors, Proc. IEEE 86(8) (1998) 1640-1659.
- F. M. Battiston, J. -P. Ramseyer, H. P. Lang, M. K. Baller, Ch. Gerber, J. K. Gimzewski, E. Meyer, H. -J. Güntherodt, A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout, Sens. Actuators B 77 (2001) 122-131.
- L. A. Pinnaduwage, T. Thundat, J. E. Hawka, D. L. Heddena, P. F. Britt, E. J. Houser, S. Stepnowski, R. A. McGill, D. Bubb, Detection of 2,4-dinitrotoluene using microcantilever sensors, Sens. Actuators B 99 (2004) 223-229.
- N. V. Lavrik, M. J. Sepaniak, P. G. Datskos, Cantilever transducers as a platform for chemical and biological sensors, Rev. Sci. Instrum. 75 (2004) 2229-2253.
- V. Sazonova, Y. Yaish, H. Üstünel, D. Roundy, T. A. Arias, P. L. McEuen, A tunable carbon nanotube electromechanical oscillator, Nature 431 (2004) 284-287.
- I. Voiculescu, M. E. Zaghloul, R. A. McGill, E. J. Houser, G. K. Fedder, Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons, IEEE Sensors J. 5 (2005) 641-647.
- P. S. Waggoner, H. G. Craighead, Micro-and nanomechanical sensors for environmental, chemical, and biological detection, Lab Chip 7 (2007) 1238-1255.
- H. P. Lang, J. P. Ramseyer, W. Grange, T. Braun, D. Schmid, P. Hunziker, C. Jung, M. Hegner, C. Gerber, An artificial nose based on microcantilever array sensors, J. Physics: Conf. Series 61 (2007) 663-667.
- L. Senesac, T. Thundat, Nanosensors for trace explosive detection, Materials Today 11 (2008) 28-36.
- M. Alvarez, L. M. Lechuga, Microcantilever-based platforms as biosensing tools, Analyst 135 (2010) 827-836.
- A. Boisen, S. Dohn, S. S. Keller, S. Schmid, M. Tenje, Cantilever-like micromechanical sensors, Rep. Prog. Phys. 74 (2011) 036101 (30pp).
- N. V. Lavrik and P. G. Datskos, Femtogram mass detection using photothermally actuated nanomechanical resonators, Appl. Phys. Lett. 82 (2003) 2697-99.
- B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, P. Neuzil, Attogram detection using nanoelectromechanical oscillators, J. Appl. Phys. 95 (2004) 3694-3703.
- Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, M. L. Roukes, Zeptogram-scale nanomechanical mass sensing, Nano Lett., 6 (2006) 583-586.
- J. Chaste, A. Eichler, J.Moser, G. Ceballos, R. Rurali, A. Bachtold, A nanomechanical mass sensor with yoctogram resolution, Nat. Nano. 7 (2012) 301-304.
- D. J. Young, C. A. Zorman, M. Mehregany, MEMS/NEMS devices and applications, in: Springer Handbook of Nanotechnology, B. Bhushan (Editor), Springer-Verlag Berlin Heidelberg 2010, Ch. 12, 359-388.
- S. Lucyszyn (Editor), Advanced RF MEMS, Cambridge University Press, Cambridge, 2010.
- R. J. Pryputniewicz, Current trends and future directions in MEMS, Experimental Mechanics 52 (2012) 289-303.
- M. Niedermayer, Cost-Driven Design of Smart Micro Systems, Artech House, Norwood, 2012.
- R. Bogue, MEMS sensors: past, present and future, Sensor Review (2007) 7-13.
- M. I. Younis, MEMS Linear and Nonlinear Statics and Dynamics, Springer New York Dordrecht Heidelberg London, 2011, Chs. 1, 4, 5, 7.
- K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald, S. H. Strogatz, S. G. Adams, Five parametric resonances in a micromechanical system, Nature 36 (1998) 149-152.
- M. Napoli, B. Bamieh, K. Turner, A capacitive microcantilever: modelling, validation, and estimation using current measurements, J. Dynamic Systems, Measurement, and Control 126 (2004) 319-326.
- Y. C. Hu, C. M. Chang, S. C. Huang, Some design considerations on the electrostatically actuated microstructures, Sens. Actuators A 112 (2004) 155-161.
- J. Rhoads, S. Shaw, K. Turner, The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation, J. Micromech. Microeng. 16 (2006) 890- 899.
- W. -M. Zhang, G. Meng, Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation, IEEE Sensors J. 7 (2007) 370-380.
- F. M. Alsaleem, M. I. Younis. H. M. Ouakad, On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators, J. Micromech. Microeng. 19 (2009) 045013 (14pp).
- D. Antonio, D. H. Zanette, D. López, Frequency stabilization in nonlinear micromechanical oscillators, Nat. Commun. 3 (2012) 806 (6pp).
- F. R. Blom, S. Bouwstra, M. Elwenspoek, J. H. J. Fiuitman, Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry, J. Vac. Sci. Technol. B 10 (1992) 19-26.
- T. B. Gabrielson, Micromachined mechanical-thermal noise in acoustic and vibration sensors, IEEE Trans. Electron Devices 40 (1993) 903-909.
- M. Andrews, I. Harm, G. Turner, A comparison of squeeze-film theory with measurements on a microstructure, Sens. Actuators A 36 (1993) 79-81.
- R. Lifshitz, M. L. Roukes, Thermoelastic damping in micro-and nanomechanical systems, Phys. Rev. B 61 (2000) 5600-5609.
- C. Zener, Internal friction in solids I. Theory of internal friction in reeds, Phys. Rev. 52 (1937) 230-235.
- K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, D. Rugar, Quality factors in micron-and submicron-thick cantilevers, J. Microelectromechanical Systems 9 (2000) 117-125.
- J. Yang, T. Ono, M. Esashi, Energy dissipation in submicrometer thick single-crystal silicon cantilevers, J. Microelectromechanical Systems 11 (2002) 775-783.
- D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, J. M. Parpia, Measurement of mechanical resonance and losses in nanometer scale silicon wires, Appl. Phys. Lett. 75 (1999) 920-922.
- J. R. Vig, Y. Kim, Noise in microelectromechanical system resonators, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46 (1999) 1558-65.
- A. N. Cleland, Noise processes in nanomechanical resonators, J. Appl. Phys. 92 (2002) 2758-2769.
- A. N. Cleland, Thermomechanical noise limits on parametric sensing with nanomechanical resonators, New Journal of Physics 7 (2005) 235 (16pp).
- Z. Djurić, Mechanisms of noise sources in microelectromechanical systems, Microelectronics Reliability 40 (2000) 919-932.
- C. Zhang, G. Xu, Q. Jiang, Analysis of the Air-damping effect on a micromachined beam resonator, Mathematics and Mechanics of Solids, 8 (2003) 315-325.
- M. Bao, H. Yang, Squeeze film air damping in MEMS, Sens. Actuators A 136 (2007) 3- 27.
- Z. Hao, A. Erbil, F. Ayazi, An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations, Sens. Actuators A 109 (2003) 156-164.
- D. M. Photiadis, J. A. Judge, Attachment losses of high Q oscillators, Appl. Phys. Lett. 85 (2004) 482-484.
- A. Labuda, J. R. Bates, P. H. Grütter, The noise of coated cantilevers, Nanotechnology 23 (2012) 025503 (9pp).
- S. -J. Kim, T. Ono, M. Esashi, Study on the noise of silicon capacitive resonant mass sensors in ambient atmosphere, J. Appl. Phys, 102 (2007) 104304 (6pp).
- M. T. Clark, J. E. Sader, J. P. Cleveland, M. R. Paul, Spectral properties of microcantilevers in viscous fluid, Phys. Rev. E 81 (2010) 046306 (10pp).
- J. D. Parkin, G. Hähner, Mass determination and sensitivity based on resonance frequency changes of the higher flexural modes of cantilever sensors, Rev. Sci. Instrum 82 (2011) 035108 (4pp).
- D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, H. Baltes, Complementary metal oxide semiconductor cantilever arrays on a single chip: Mass-sensitive detection of volatile organic compounds, Anal. Chem. 74 (2002) 3084-3095.
- F. Lochon, I. Dufour, D. Rebière, A microcantilever chemical sensors optimization by taking into account losses, Sens. Actuators B 118 (2006) 292-296.
- I. Dufour, F. Lochon, S. M. Heinrich, F. Josse, D. Rebière, Effect of coating viscoelasticity on quality factor and limit of detection of microcantilever chemical sensors, IEEE Sensors J. 7 (2007) 230-236.
- Y.-K. Yong and J. R. Vig, Modeling resonator frequency fluctuations induced by adsorbing and desorbing surface molecules, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 37 (1990) 543-550.
- Z. Djurić, O. Jakšić, D. Randjelović, Adsorption-desorption noise in michromechanical resonant structures, Sens. Actuators A 96 (2002) 244-251.
- G. Palasantzas, Adsorption-desorption noise influence on mass sensitivity and dynamic range of nanoresonators with rough surfaces, J. Appl. Phys. 101 (2007) 076103-3.
- Y. T. Yang, C. Callegari, X. L. Feng, M. L. Roukes, Surface adsorbate fluctuations and noise in nanoelectromechanical systems, Nano Lett. 11 (2011) 1753-1759.
- J. Lu, T. Ikehara, Y. Zhang, T. Mihara, R. Maeda, Mechanical quality factor of microcantilevers for mass sensing applications, Proc. SPIE 6800, Device and Process Technologies for Microelectronics, MEMS, Photonics, and Nanotechnology IV, 68001Y (January 09, 2008).
- Y. B. Yi, Geometric effects on thermoelastic damping in MEMS resonators, J. Sound and Vibration 309 (2008) 588-599.
- C. Li, M. H. Miller, Optimization strategy for resonant mass sensor design in the presence of squeeze film damping, Micromachines 1 (2010)112-128.
- S. Kumar, T. Alam, A. Haque, Thermo-mechanical coupling and size effects in micro and nano resonators, Micro and Nano Systems Letters 1 (2013) 1-9.
- S. Joshi, S. Hung, S. Vengallatore, Design strategies for controlling damping in micromechanical and nanomechanical resonators, EPJ Techniques and Instrumentation 2014, 1(5) (2014) 1-14.
- R. E. Mihailovich, N. C. MacDonald, Dissipation measurements of vacuum-operated single crystal silicon microresonators, Sens. Actuators A 50 (1995) 199-207.
- Z. J. Davis, W. Svendsen, A. Boisen, Design, fabrication and testing of a novel MEMS resonator for mass sensing applications, Microelectronic Engineering 84 (2007) 1601- 1605.
- L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance, Rev. Mod. Phys. 70 (1998) 223-287.
- B. Ando, S. Graziani, Stochastic Resonance Theory and Applications, Kluwer, Boston, 2000.
- C. V. Heer, Statistical Mechanics, Kinetic Theory and Stochastic Processes, Academic New York London, 1972, Ch. X.
- U. Schoeneberg, B. J. Hosticka and G. Zimmer, A novel technique for capacitive gas sensors, Sens. Actuators B1 (1990) 58-6.
- S. V. Silverthorne, C. W. Watson, R. D. Baxter, Characterization of a humidity sensor that incorporates a CMOS capacitance measuring circuit, Sens. Actuator, 19 (1989) 371- 383.
- M. V. Paemel, Interface circuit for capacitive accelerometer, Sens. Actuators 27 (1989) 629-637.
- D. R. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton Jr., S. V. Patel, T. E. Mlsna, D. McCorkle, B. Warmack, Design and performance of a microcantilever- based hydrogen sensor, Sens. Actuators B 88 (2003) 120-131.
- W. Kuehnel, S. Sherman, A surface micromachined silicon accelerometer with on-chip detection circuitry, Sens. Actuators A 45 (1994) 7-16.
- V. Saxena, T. J. Plum, J. R. Jessing. R. J. Baker Design and fabrication of a MEMS capacitive chemical sensor system, IEEE Workshop on Microelectronics and Electron Devices (WMED '06) 2006, pp. 2-18.
- J. Amírola, A. Rodríguez, L. Castañer , J. P. Santos, J. Gutíerrez, M. C. Horrillo, Micromachined silicon microcantilevers for gas sensing applications with capacitive read-out, Sens. Actuators B 111-112 (2005) 247-253.
- N. Lazarus, S. S. Bedair, C. -C. Lo, G. K. Fedder, CMOS-MEMS capacitive humidity sensor, J. Microelectromechanical Systems 19 (2010) 183-191.
- T. Göddenhenrich, H. Lemke, U. Hartmann, C. Heiden, Force microscope with capacitive displacement detection, J. Vac. Sci. Technol. A 8 (1990) 383-387.
- S. -J. Kim, T. Ono, M. Esashi, Capacitive resonant mass sensor with frequency demodulation detection based on resonant circuit, Appl. Phys. Lett. 88 (2006) 053116-1- 3.
- P. Singh, R. D. S. Yadava, 2011 Effect of film thickness and viscoelasticity on separability of vapour classes by wavelet and principal component analyses of polymer- coated surface acoustic wave sensor transients, Meas. Sci. Technol. 22 (2011) 025202(15 pp).
- H. C. Nathanson, W. E. Newell, R. A. Wickstrom, J. R. Davis Jr., The resonant gate transistor, IEEE Trans Electron Devices, ED-14 (1967) 117-133.
- D. J. Ijntema, H. A. C. Tilmans, Static and dynamic aspects of an air-gap capacitor, Sens. Actuators A 35 (1992) 121-128.
- R. C. Batra, M. Porfiri, D. Spinello, Review of modeling electrostatically actuated microelectromechanical systems, Smart Mater. Struct. 16 (2007) R23-R31.
- N. Lobontiu, Dynamics of Microelectromechanical Systems , Springer , New York 2007, Ch. 1.
- R. G. Merritt, Vibration of systems having distributed mass and elasticity, in: Harris' Shock and Vibration Handbook, A. G. Piersol, T. L. Paez (Eds.), McGraw-Hill, New York, 2010), pp. 7.1-7.40.
- J. P. Cleveland, S. Manne, D. Bocek, P. K. Hansma, A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64 (1993) 403-405.
- G. R. Fowles, G. L. Cassiday, Analytical Mechanics, Thomson Brooks/Cole Belmont, 2005, Ch. 3.6.
- M. J. Wenzel, F. Josse, S. M. Heinrich, E. Yaz, P. G. Datskos, Sorption-induced static bending of microcantilevers coated with viscoelastic material, J. Appl. Phys. 103 (2008) 064913-11.
- G. G. Stoney, The tension of metallic films deposited by electrolysis, Proc. R. Soc. London, Ser. A 82 (1909)172-175.
- M. Gitterman, Harmonic oscillator with fluctuating damping parameter, Phys. Rev. 69 (2004) 041101-1-4.
- M. Gitterman, Harmonic oscillator with multiplicative noise: Nonmonotonic dependence on the strength and the rate of dichotomous noise, Phys. Rev. E 67 (2003) 057103-1-4.
- V. E. Shapiro, V. M. Loginov, Formula of differentiation and their use for solving stochastic equations, Physica 91A (1978) 563-574.
- M. A. Hopcroft, W. D. Nix, T. W. Kenny, What is the Young's Modulus of Silicon? J. Microelectromechanical System 19 (2010) 229-238.
- J. J. Wortman, R. A. Evans, Young's modulus, shear modulus, and Poisson's ratio in silicon and germanium, J. Appl. Phy. 36 (1965) 153-156.
- K. E. Petersen, Silicon as a Mechanical Material, Proc. IEEE 70 (1982) 420-457.
- D. A. Thomas, D. W. Robinson, Some dynamic mechanical properties of polyisobutylene over a wide temperature range, British J. Appl. Phys. 6 (1955) 41-43.
- J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1980, p. 608.
- J. C. Dixon, The Shock Absorber Handbook, 2d Edition, John Wiley & Sons/Professional Engineering Publishing, West Sussex, 2007, p. 377.
- M. Alvarez, J. Tamayo, J. A. Plaza, K. Zinoviev, C. Dominguez, L. M. Lechunga, J. Appl. Phys. 99 (2006) 024910 (6pp).
- S. Fauve, F. Heslot, Stochastic resonance in a bistable system, Phys. Lett. 97(1/2) (1983) 5-7.
- B. McNamara, K. Wiesenfeld, R. Roy, Observation of stochastic resonance in ring laser, Phys. Rev. Lett. 60(25) (1988) 2626-2629.
- V. S. Anishchenko, M. A. Safonova, L. O. Chua, Stochastic resonance in Chua's circuit driven by amplitude or frequency-modulated signals, Int. J. Bifurcation and Chaos 4 (1994) 441-446.
- K. Wiesenfeld, F. Moss, Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs, Nature 373 (1995) 33-36.
- A. S. Pikovsky, J. Kurths, Coherance resonance in a noise-driven excitable system, Phys. Rev. Lett. Vol.78,no.5 (1997) 775-778.
- A. Neiman, A. Silchenko, V. Anishchenko, L. S. Geier, Stochastic resonance: Noise- enhanced phase coherence, Phys. Rev. E 58(6) (1998) 7118-7125.
- D. V. Dylov, J. W. Fleischer, Nonlinear self-filtering of noisy images via dynamical stochastic resonance, Nature Photonics 4 (2010) 323-328.
- F. C. Blondeau, D. Rousseau, Noise improvements in stochastic resonance: from signal amplification to optimal detection, Fluctuation and Noise Letters 2(3) (2002) L221-233.
- Vivek K Verma received his B.Sc. (Physics) in 2005 and M.Sc. (Electronics) from UIET CSJM University Kanpur, India in 2009. He is pursuing research for Ph.D. on stochastic resonance phenomena in nonlinear sensors at the Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi, India.
- R D S Yadava received his B.Sc. (Honors), M.Sc. and Ph.D. in Physics in 1974, 1976 and 1981 respectively from the Banaras Hindu University, Varanasi, India. December 2005 onwards he is in teaching and research as Professor of Physics at Banaras Hindu University. Before that from October 1980-December 2005 he worked as R & D Scientist at the Solid State Physics Laboratory, Defence Research and Development Organization, Government of
- India, Delhi. His present research interests include: chemical sensors and sensors array based on surface acoustic wave and micro/nano cantilever devices, signal processing and pattern recognition for electronic nose; nonlinear dynamics of autonomous and coupled oscillator systems involving SAW and MEMS/NEMS resonators (particularly, parametric oscillations, bifurcation, chaos, noise, synchronization and stochastic resonance) for applications in chemical sensing and communication domains; and, modeling of self-propelled autonomous agents and swarm intelligence. During defense research and development association he worked on surface acoustic wave devices and systems for radar signal processing, SAW chemical sensors, mercury-cadmium-telluride semiconductors for infrared sensors, metal- oxide-semiconductor field effect devices, electrical percolation systems and fluctuation phenomena. For Ph.D. he worked on radiation blistering in solids.