A non-abelian Seiberg-Witten invariant for integral homology 3-spheres (original) (raw)

Abstract

A new di eomorphism invariant of integral homology 3{spheres is de ned using a non-abelian \quaternionic" version of the Seiberg{Witten equations.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (13)

  1. S Akbulut, J. McCarthy, Casson's Invariant for oriented homology 3{spheres { an exposition, Princeton Math. Notes 36, Princeton Univ. Press (1990)
  2. M F Atiyah, V K Patodi, I M Singer, Spectral Asymmetry and Riemannian Geometry I, II, III, Math. Proc. Camb. Phil. Soc. 77 (1975) no. 1; 78 (1975) no. 3; 79 (1976) no. 1
  3. H Boden, C Herald, The SU(3){Casson invariant for integral homology 3{ spheres, J. Di . Geom. 50 (1998) 147{206
  4. H Boden, C Herald, P Kirk, An integer valued SU (3){Casson invariant, Math. Res. Lett. 8 (2001) 589{603
  5. S Donaldson, P Kronheimer, The geometry of 4{manifolds, Clarendon Press, Oxford (1990)
  6. P Feehan, T Leness, P U(2){monopoles. I: Regularily, Uhlenbeck compact- ness and transversality, J. Di . Geom. 49 (1998) 265{410
  7. T Kato, Perturbation Theory for Linear Operators, Springer{Verlag (1980) 2nd Ed. (corrected)
  8. H B Lawson, M-L Michelsohn, Spin Geometry, Princeton Univ. Press (1989)
  9. Y Lim, The equivalence of Seiberg{Witten and Casson invariants for homology 3{spheres, Math. Res. Lett. 6 (1999) 631{644
  10. Y Lim, Seiberg{Witten invariants for 3{manifolds in the case b 1 = 0 or 1, Pac. J. Math. 195 (2000) 179{204
  11. Y Lim, Seiberg{Witten moduli space for 3{manifolds with cylindrical-end T 2 R + , Comm. Contemp. Math. 2 (2000) 61{509
  12. C H Taubes, Casson's Invariant and Gauge Theory, J. Di . Geom. 31 (1990) 547{599
  13. K K Uhlenbeck, Connections with L p bounds on curvature, Comm. Math. Phys. 83 (1982) 31{42