Angle modulated population based algorithms to solve binary problems (original) (raw)

Recently, continuous-valued optimization problems have received a great amount of focus, resulting in optimization algorithms which are very efficient within the continuousvalued space. Many optimization problems are, however, defined within the binaryvalued problem space. These continuous-valued optimization algorithms can not operate directly on a binary-valued problem representation, without algorithm adaptations because the mathematics used within these algorithms generally fails within a binary problem space. Unfortunately, such adaptations may alter the behavior of the algorithm, potentially degrading the performance of the original continuous-valued optimization algorithm. Additionally, binary representations present complications with respect to increasing problem dimensionality, interdependencies between dimensions, and a loss of precision. This research investigates the possiblity of applying continuous-valued optimization algorithms to solve binary-valued problems, without requiring algorithm adaptation. This is achieved through the application of a mapping technique, known as angle modulation. Angle modulation effectively addresses most of the problems associated with the use of a binary representation by abstracting a binary problem into a four-dimensional continuous-valued space, from which a binary solution is then obtained. The abstraction is obtained as a bit-generating function produced by a continuous-vaued algorithm. A binary solution is then obtained by sampling the bit-generating function. This thesis proposes a number of population-based angle-modulated continuousvalued algorithms to solve binary-valued problems. These algorithms are then compared to binary algorithm counterparts, using a suite of benchmark functions. Empirical analysis will show that the angle-modulated continuous-valued algorithms are viable alternatives to binary optimization algorithms.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.