The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin (original) (raw)

Benzoquinone ansamycin 17AAG binds to mitochondrial voltage-dependent anion channel and inhibits cell invasion

Proceedings of the National Academy of Sciences, 2011

Geldanamycin and its derivative 17AAG [17-(Allylamino)-17-demethoxygeldanamycin, telatinib] bind selectively to the Hsp90 chaperone protein and inhibit its function. We discovered that these drugs associate with mitochondria, specifically to the mitochondrial membrane voltage-dependent anion channel (VDAC) via a hydrophobic interaction that is independent of HSP90. In vitro, 17AAG functions as a Ca 2+ mitochondrial regulator similar to benzoquinone-ubiquinones like Ub0. All of these compounds increase intracellular Ca 2+ and diminish the plasma membrane cationic current, inhibiting urokinase activity and cell invasion. In contrast, the HSP90 inhibitor radicicol, lacking a bezoquinone moiety, has no measurable effect on cationic current and is less effective in influencing intercellular Ca 2+ concentration. We conclude that some of the effects of 17-AAG and other ansamycins are due to their effects on VDAC and that this may play a role in their clinical activity.

Formation of 17-Allylamino-Demethoxygeldanamycin (17-AAG) Hydroquinone by NAD(P)H:Quinone Oxidoreductase 1: Role of 17-AAG Hydroquinone in Heat Shock Protein 90 Inhibition

Cancer Research, 2005

We have examined the role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the bioreductive metabolism of 17-allylamino-demethoxygeldanamycin (17-AAG). High-performance liquid chromatography (HPLC) analysis of the metabolism of 17-AAG by recombinant human NQO1 revealed the formation of a more polar metabolite 17-AAGH 2 . The formation of 17-AAGH 2 was NQO1 dependent, and its formation could be inhibited by the addition of 5-methoxy-1,2-dimethyl-3-[(4nitrophenoxy)methyl]indole-4,7-dione (ES936), a mechanismbased (suicide) inhibitor of NQO1. The reduction of 17-AAG to the corresponding hydroquinone 17-AAGH 2 was confirmed by tandem liquid chromatography-mass spectrometry. 17-AAGH 2 was relatively stable and only slowly underwent autooxidation back to 17-AAG over a period of hours. To examine the role of NQO1 in 17-AAG metabolism in cells, we used an isogenic pair of human breast cancer cell lines differing only in NQO1 levels. MDA468 cells lack NQO1 due to a genetic polymorphism, and MDA468/NQ16 cells are a stably transfected clone that express high levels of NQO1 protein. HPLC analysis of 17-AAG metabolism using cell sonicates and intact cells showed that 17-AAGH 2 was formed by MDA468/NQ16 cells, and formation of 17-AAGH 2 could be inhibited by ES936. No 17-AAGH 2 was detected in sonicates or intact MDA468 cells. Following a 4-hour treatment with 17-AAG, the MDA468/NQ16 cells were 12-fold more sensitive to growth inhibition compared with MDA468 cells. More importantly, the increased sensitivity of MDA468/NQ16 cells to 17-AAG could be abolished if the cells were pretreated with ES936. Cellular markers of heat shock protein (Hsp) 90 inhibition, Hsp70 induction, and Raf-1 degradation were measured by immunoblot analysis. Marked Hsp70 induction and Raf-1 degradation was observed in MDA468/NQ16 cells but not in MDA468 cells. Similarly, downstream Raf-1 signaling molecules mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase and ERK also showed decreased levels of phosphorylation in MDA468/NQ16 cells but not in MDA468 cells. The ability of 17-AAG and 17-AAGH 2 to inhibit purified yeast and human Hsp90 ATPase activity was examined. Maximal 17-AAG-induced ATPase inhibition was observed in the presence of NQO1 and could be abrogated by ES936, showing that 17-AAGH 2 was a more potent Hsp90 inhibitor compared with 17-AAG. Molecular modeling studies also showed that due to increased hydrogen bonding between the hydroquinone and the Hsp90 protein, 17-AAGH 2 was bound more tightly to the ATP-binding site in both yeast and human Hsp90 models. In conclusion, these studies have shown that reduction of 17-AAG by NQO1 generates 17-AAGH 2 , a relatively stable hydroquinone that exhibits superior Hsp90 inhibition. (Cancer Res 2005; 65(21): 10006-15)

Targeting mitochondria in cancer therapy could provide a basis for the selective anti-cancer activity

PLOS ONE, 2019

To determine the target of the recently identified lead compound NSC130362 that is responsible for its selective anti-cancer efficacy and safety in normal cells, structure-activity relationship (SAR) studies were conducted. First, NSC13062 was validated as a starting compound for the described SAR studies in a variety of cell-based viability assays. Then, a small library of 1,4-naphthoquinines (1,4-NQs) and quinoline-5,8-diones was tested in cell viability assays using pancreatic cancer MIA PaCa-2 cells and normal human hepatocytes. The obtained data allowed us to select a set of both non-toxic compounds that preferentially induced apoptosis in cancer cells and toxic compounds that induced apoptosis in both cancer and normal cells. Anti-cancer activity of the selected non-toxic compounds was confirmed in viability assays using breast cancer HCC1187 cells. Consequently, the two sets of compounds were tested in multiple cell-based and in vitro activity assays to identify key factors responsible for the observed activity. Inhibition of the mitochondrial electron transfer chain (ETC) is a key distinguishing activity between the non-toxic and toxic compounds. Finally, we developed a mathematical model that was able to distinguish these two sets of compounds. The development of this model supports our conclusion that appropriate quantitative SAR (QSAR) models have the potential to be employed to develop anti-cancer compounds with improved potency while maintaining non-toxicity to normal cells.

Mitochondrial targeting of quinones: Therapeutic implications

Mitochondrion, 2007

Mitochondrial oxidative damage contributes to a range of degenerative diseases. Ubiquinones have been shown to protect mitochondria from oxidative damage, but only a small proportion of externally administered ubiquinone is taken up by mitochondria. Conjugation of the lipophilic triphenylphosphonium cation to a ubiquinone moiety has produced a compound, MitoQ, which accumulates selectively into mitochondria. MitoQ passes easily through all biological membranes and, because of its positive charge, is accumulated several hundred-fold within mitochondria driven by the mitochondrial membrane potential. MitoQ protects mitochondria against oxidative damage in vitro and following oral delivery, and may therefore form the basis for mitochondria-protective therapies.

Inhibition of the mitochondrial respiratory chain by alkylhydroxynaphthoquines: Reversal on discharge of the energized state

Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1973

Inhibition of mitochondrial respiration by alkylhydroxynaphthoquinones may be reversed by addition of a variety of uncouplers including substituted phenols, carbonyl cyanide phenylhydrazones, divalent cations and univalent cations in the presence of ionophoretic antibiotics. A likely explanation for such reversibility is the requirement that the anionic inhibitor be transported to a site of action within the mitochondrion. Support for this view includes (1) failure to obtain reversal of inhibition with submitochondrial particles, (2) release of inhibition by a competing anion, succinate, (3) augmentation of inhibition when a divalent cation is taken up, (4) the chemical diversity of uncouplers that release inhibition and (5) inhibiton by uncoupling compounds of the uptake of labeled alkylhydroxynaphthoquinones. It is suggested that a similar explanation may apply to two other inhibitors of the cytochrome b-c region, antimycin and alkylhydroxyquinoline-N-oxides.

Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90

Journal of Clinical Investigation, 2009

Although therapeutically targeting a single signaling pathway that drives tumor development and/or progression has been effective for a number of cancers, in many cases this approach has not been successful. Targeting networks of signaling pathways, instead of isolated pathways, may overcome this problem, which is probably due to the extreme heterogeneity of human tumors. However, the possibility that such networks may be spatially arranged in specialized subcellular compartments is not often considered in pathway-oriented drug discovery and may influence the design of new agents. Hsp90 is a chaperone protein that controls the folding of proteins in multiple signaling networks that drive tumor development and progression. Here, we report the synthesis and properties of Gamitrinibs, a class of small molecules designed to selectively target Hsp90 in human tumor mitochondria. Gamitrinibs were shown to accumulate in the mitochondria of human tumor cell lines and to inhibit Hsp90 activity by acting as ATPase antagonists. Unlike Hsp90 antagonists not targeted to mitochondria, Gamitrinibs exhibited a "mitochondriotoxic" mechanism of action, causing rapid tumor cell death and inhibiting the growth of xenografted human tumor cell lines in mice. Importantly, Gamitrinibs were not toxic to normal cells or tissues and did not affect Hsp90 homeostasis in cellular compartments other than mitochondria. Therefore, combinatorial drug design, whereby inhibitors of signaling networks are targeted to specific subcellular compartments, may generate effective anticancer drugs with novel mechanisms of action.

Three classes of ubiquinone analogs regulate the mitochondrial permeability transition pore through a common site

Journal of Biological …, 2000

To identify the structural features required for regulation of the mitochondrial permeability transition pore (PTP) by ubiquinone analogs (Fontaine, E., Ichas, F., and Bernardi, P. (1998) J. Biol. Chem. 40, 25734 -25740), we have carried out an analysis with quinone structural variants. We show that three functional classes can be defined: (i) PTP inhibitors (ubiquinone 0, decylubiquinone, ubiquinone 10, 2,3-dimethyl-6-decyl-1,4-benzoquinone, and 2,3,5-trimethyl-6-geranyl-1,4-benzoquinone); (ii) PTP inducers (2,3-dimethoxy-5-methyl-6-(10-hydroxydecyl)-1,4-benzoquinone and 2,5-dihydroxy-6undecyl-1,4

Mitochondrial voltage-dependent anion channels (VDACs) as novel pharmacological targets for anti-cancer agents

Recently, it was demonstrated that some anti-cancer agents used mitochondrial voltage-dependent anion channels (VDAC1–3 isoforms) as their pharmacological target. VDACs are expressed more highly in cancer cells than normal cells; thus the VDAC-dependent cytotoxic agents can have cancer-selectivity. Furanonaphthoquinones (FNQs) induced caspase-dependent apoptosis via the production of NADH-dependent reactive oxygen species (ROS) by VDAC1. The ROS production and the anti-cancer activity of FNQs were increased by VDAC1 overexpression. Meanwhile, erastin induced RAS-RAF-MEK-dependent non-apoptotic cell death via VDAC2. On the other hand, VDACs were needed for transporting ATP to hexokinase (HK), which was highly expressed in cancer cells. We hypothesized that the high glycolysis might induce up-regulation of VDAC. In this review, we propose that VDACs are novel candidates for effective pharmacological targets of anti-cancer drugs.

Reactive oxygen species mediate hepatotoxicity induced by the Hsp90 inhibitor geldanamycin and its analogs

Free Radical Biology and Medicine, 2010

Geldanamycin (GM), a benzoquinone ansamycin antibiotic, is a natural product inhibitor of Hsp90 with potent and broad anti-cancer properties. Because of its adverse effects on liver, its less toxic derivatives 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) and 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) are currently being evaluated for the treatment of cancer. Previously, it has been demonstrated that the redox cycling of GM by NADPH-cytochrome P450 reductase leads to the formation of the GM semiquinone and superoxide radicals, the latter being identified using spin-trapping. We hypothesized that the different hepatotoxicity induced by GM, 17-AAG and 17-DMAG reflects the redox active properties of the quinone moiety and possibly the extent of superoxide formation, which may stimulate cellular oxidative injury. Our data demonstrate that superoxide can be efficiently trapped during the reduction of GM, 17-AAG and 17-DMAG by NADPH-cytochrome P450 reductase, and that superoxide formation rate followed the order 17-DMAG N 17-AAG N GM. In the absence of superoxide scavengers, the rate of NADPH oxidation followed the order 17-DMAG N GM N 17-AAG. The half-wave one-electron reduction potentials (E 1/2) of GM, 17-AAG and 17-DMAG in DMSO have been determined to be-0.37,-0.13 and-0.015 V (vs. Ag/AgCl), respectively. If the same order of E 1/2 follows in neutral aqueous media, thermodynamic considerations imply that 17-DMAG is more readily reduced by the P450 reductase as well as by superoxide. The order of the drug cytotoxicity toward rat primary hepatocytes, as determined by their effect on cell viability and on intracellular oxidant level, was opposite to the order of E 1/2 of the respective quinone/semiquinone couples. These results suggest that hepatotoxicity exhibited by the Hsp90 inhibitors belonging to benzoquinone ansamycins could be attributed to superoxide. The apparent discrepancy between the order of toxicity and the orders of superoxide formation rate, which is correlated with E 1/2 , is discussed. Published by Elsevier Inc.