Gate Elimination for Linear Functions and New Feebly Secure Constructions (original) (raw)

Abstract

We consider gate elimination for linear functions and show two general forms of gate elimination that yield novel corollaries. Using these corollaries, we construct a new linear feebly secure trapdoor function that has order of security \(\frac54\) which exceeds the previous record for linear constructions. We also give detailed proofs for nonconstructive circuit complexity bounds on linear functions.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (26)

  1. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: Proceedings of the 29 th Annual ACM Symposium on Theory of Computing. pp. 284-293 (1997)
  2. Alon, N., Karchmer, M., Wigderson, A.: Linear circuits over GF(2). SIAM Journal of Computing 19(6), 1064-1067 (1990)
  3. Blum, N.: A boolean function requiring 3n network size. Theoretical Computer Science 28, 337-345 (1984)
  4. Bublitz, S.: Decomposition of graphs and monotone formula size of homogeneous functions. Acta Informatica 23, 410-417 (1986)
  5. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory IT-22, 644-654 (1976)
  6. Dwork, C.: Positive applications of lattices to cryptography. In: Proceedings of the 22 nd International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science. vol. 1295, pp. 44-51 (1997)
  7. Goldreich, O.: Foundations of Cryptography. Basic Tools. Cambridge University Press (2001)
  8. Grigoriev, D., Hirsch, E.A., Pervyshev, K.: A complete public-key cryptosystem. Groups, Complexity, and Cryptology 1, 1-12 (2009)
  9. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for oblivious transfers and other primitives. In: Proceedings of EuroCrypt 05, Lecture Notes in Computer Science. vol. 3494, pp. 96-113 (2005)
  10. Hiltgen, A.P.: Constructions of feebly-one-way families of permutations. In: Proc. of AsiaCrypt '92. pp. 422-434 (1992)
  11. Hiltgen, A.P.: Cryptographically Relevant Contributions to Combinational Com- plexity Theory, ETH Series in Information Processing, vol. 3. Konstanz: Hartung- Gorre (1994)
  12. Hirsch, E.A., Nikolenko, S.I.: A feebly secure trapdoor function. In: Proceedings of the 4 th Computer Science Symposium in Russia, Lecture Notes in Computer Science. vol. 5675, pp. 129-142 (2009)
  13. Koblitz, N., Menezes, A.: Another look at "provable security". Journal of Cryptol- ogy 20(1), 3-37 (2007)
  14. Kojevnikov, A.A., Nikolenko, S.I.: New combinatorial complete one-way functions. In: Proceedings of the 25 th Symposium on Theoretical Aspects of Computer Sci- ence. pp. 457-466. Bordeaux, France (2008)
  15. Kojevnikov, A.A., Nikolenko, S.I.: On complete one-way functions. Problems of Information Transmission 45(2), 108-189 (2009)
  16. Lamagna, E.A., Savage, J.E.: On the logical complexity of symmetric switching functions in monotone and complete bases. Tech. rep., Brown University, Rhode Island (July 1973)
  17. Melanich, O.: Nonlinear feebly secure cryptographic primitives. PDMI preprints 12 (2009)
  18. Paul, W.J.: A 2, 5n lower bound on the combinational complexity of boolean func- tions. SIAM Journal of Computing 6, 427-443 (1977)
  19. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra- phy. In: Proceedings of the 37 th Annual ACM Symposium on Theory of Computing. pp. 84-93 (2005)
  20. Regev, O.: Lattice-based cryptography. In: Proceedings of the 26 th Annual Interna- tional Cryptology Conference (CRYPTO'06), Lecture Notes in Computer Science. vol. 4117, pp. 131-141 (2006)
  21. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120-126 (1978)
  22. Savage, J.E.: The Complexity of Computing. Wiley, New York (1976)
  23. Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical Journal 28(4), 656-717 (1949)
  24. Stockmeyer, L.: On the combinational complexity of certain symmetric boolean functions. Mathematical Systems Theory 10, 323-326 (1977)
  25. Vernam, G.S.: Cipher printing telegraph systems for secret wire and radio tele- graphic communications. Journal of the IEEE 55, 109-115 (1926)
  26. Wegener, I.: The Complexity of Boolean Functions. B. G. Teubner, and John Wiley & Sons (1987)