In vivo glutathione levels in young persons with bipolar disorder: A magnetic resonance spectroscopy study (original) (raw)


Background: Glutathione [GSH] is a major intracellular antioxidant that disposes peroxides and protects neurons and glial cells from oxidative stress. In both schizophrenia and bipolar disorder, atypical levels of GSH have been demonstrated, particularly in the anterior cingulate cortex (ACC), though no consistent results have emerged due to limitations in sample size. Our objective was to evaluate if GSH levels in the ACC are abnormal in these 2 disorder, when compared to healthy controls. Methods: We reviewed all 1H-MRS studies reporting GSH values for patients satisfying DSM or ICD based criteria for (1) the psychotic disorders-schizophrenia or schizoaffective disorder or (2) bipolar disorder in comparison to a healthy controls (HC) group in the Anterior Cingulate Cortex (ACC) published until June 2018. A random-effects model was used to calculate the pooled effect size. A meta-regression analysis of moderator variables was also undertaken. Results: The literature search identified 18 studies with a total sample size of 581 controls, 578 patients with schizophrenia or bipolar disorder. There is a small but significant reduction in ACC GSH in patients with schizophrenia compared to HC (N = 13; RFX SMD =0.26; 95% CI [0.07 to 0.44]; p = 0.008; heterogeneity p = 0.11). There is a significant increase in the ACC GSH concentration in bipolar disorder compared to HC (N = 6; RFX SMD = −0.28, 95% CI [−0.09 to −0.47]; p = 0.003; heterogeneity p = 0.95). Conclusions: We report a small, but significant reduction in GSH concentration in the ACC in schizophrenia, and a similar sized increase in bipolar disorder. A notable limitation is the lack of sufficient data to examine the moderating effect of the symptom profile. Schizophrenia and bipolar disorder have notably different patterns of redox abnormalities in the ACC. Reduced ACC GSH may confer a schizophrenia-like clinical phenotype, while an excess favouring a bipolar disorder-like profile.

Bipolar disorder is a chronic psychological condition that disturbs many patients' lives around the world. The exact pathophysiology of bipolar disorder is yet unknown, but there are several hypotheses to explain this condition. One of the most challenging theories is the role of oxidative stress in the progression of bipolar disorder. Here, we conducted a narrative review to gather the studies that investigated the relationship between bipolar disorder and oxidative stress. We searched PubMed, Scopus, Web of science, and google scholar databases using the following keywords: “bipolar disorder,” “oxidative stress,” “oxidative markers,” and “bipolar patients.” A majority of studies showed that oxidative markers such as Thiobarbituric acid reactive substances are significantly higher in bipolar patients compared to healthy subjects. Based on the included articles, bipolar disorder is associated with oxidative stress. Nevertheless, further well-established Cohorts are required ...

Accumulating evidence indicates that oxidative and nitrosative stress (O&NS) pathways play a key role in the pathophysiology of bipolar disorder (BD) and major depressive disorder (MDD). However, only a handful of studies have directly compared alterations in O&NS pathways among patients with MDD and BD types I (BPI) and BPII. Thus, the current study compared superoxide dismutase (SOD1), lipid hydroperoxides (LOOH), catalase, nitric oxide metabolites (NOx), malondialdehyde (MDA), and advanced oxidation protein products (AOPP) between mood disorder patients in a clinically remitted state. To this end 45, 23, and 37 participants with BPI, BPII, and MDD, respectively, as well as 54 healthy controls (HCs) were recruited. Z-unit weighted composite scores were computed as indices of reactive oxygen species (ROS) production and nitro-oxidative stress driving lipid or protein oxidation. SOD1, NOx, and MDA were significantly higher in MDD than in the other three groups. AOPP was significantl...