The Galactic disc distribution of planetary nebulae with warm dust emission features — I (original) (raw)

8-13 m dust emission features in Galactic bulge planetary nebulae

Monthly Notices of the Royal Astronomical Society, 2001

A sample of 25 infrared-bright planetary nebulae (PNe) towards the Galactic bulge is analysed through 8-13 mm spectroscopy. The classification of the warm dust emission features provides a measure of the C/O chemical balance, and represents the first C/O estimates for bulge PNe. Out of 13 PNe with identified dust types, four PNe have emission features associated with C-based grains, while the remaining 9 have O-rich dust signatures. The low fraction of C-rich PNe, & 30 per cent, contrasts with that for local PNe, around , 80 per cent, although it follows the trend for a decreasing frequency of C-rich PNe with galactocentric radius (Paper I). We investigate whether the PNe discussed here are linked to the bulge stellar population (similar to type IV, or halo, PNe) or the inner Galactic disc (a young and super-metal-rich population). Although 60 per cent of the PNe with warm dust are convincing bulge members, none of the C-rich PNe satisfies our criteria, and they are probably linked to the inner Galactic disc. In the framework of single star evolution, the available information on bulge PNe points towards a progenitor population similar in age to that of local PNe (type I PNe are found in similar proportions), but super-metal-rich (to account for the scarcity of C-rich objects). Yet the metallicities of bulge PNe, as inferred from [O/H], fail to reach the required values-except for the C-rich objects. It is likely that the sample discussed here is derived from a mixed disc/bulge progenitor population and dominated by type IV PNe, as suggested by Peimbert. The much higher fraction of O-rich PNe in this sample than in the solar neighbourhood should result in a proportionally greater injection of silicate grains into the inner Galactic medium.

8-13um Dust Emission Features in Galactic Bulge Planetary Nebulae

2001

A sample of 25 IR-bright planetary nebulae (PNe) towards the Galactic bulge is analysed through 8-13µm spectroscopy. The classification of the warm-dust emission features provides a measure of the C/O chemical balance, and represents the first C/O estimates for bulge PNe. Out of 13 PNe with identified dust types, 4 PNe have emission features associated with C-based grains, while the remaining 9 have O-rich dust signatures. The low fraction of C-rich PNe, < ∼ 30%, contrasts with that for local PNe, around ∼80%, although it follows the trend for a decreasing frequency of C-rich PNe with galactocentric radius (paper I). We investigate whether the PNe discussed here are linked to the bulge stellar population (similar to type IV, or halo, PNe) or the inner Galactic disk (a young and super-metal-rich population). Although 60% of the PNe with warm dust are convincing bulge members, none of the C-rich PNe satisfy our criteria, and they are probably linked to the inner Galactic disk. In the framework of single star evolution, the available information on bulge PNe points towards a progenitor population similar in age to that of local PNe (type I PNe are found in similar proportions), but super-metal-rich (to account for the scarcity of C-rich objects). Yet the metallicities of bulge PNe, as inferred from [O/H], fail to reach the required values-except for the C-rich objects. It is likely that the sample discussed here is derived from a mixed disk/bulge progenitor population and dominated by type IV PNe, as suggested by Peimbert (1992). The much higher fraction of O-rich PNe in this sample than in the solar neighbourhood should result in a proportionally greater injection of silicate grains into the inner Galactic medium.

The planetary nebulae populations in five galaxies: abundance patterns and evolution

Astronomy and …, 1998

We have collected photometric and spectroscopic data on planetary nebulae (PNe) in 5 galaxies: the Milky Way (bulge), M 31 (bulge), M 32, the LMC and the SMC. We have computed the abundances of O, Ne and N and compared them from one galaxy to another. In each Galaxy, the distribution of oxygen abundances has a large dispersion. The average O/H ratio is larger in the M 31 and the Galactic bulge PNe than in those in the Magellanic Clouds. In a given galaxy, it is also larger for PNe with [O III] luminosities greater than 100 L , which are likely to probe more recent epochs in the galaxy history. We find that the M 31 and the Galactic bulge PNe extend the very tight Ne/H-O/H correlation observed in the Galactic disk and Magellanic Clouds PNe towards higher metallicities. We note that the anticorrelation between N/O and O/H that was known to occur in the Magellanic Clouds and in the disk PNe is also marginally found in the PNe of the Galactic bulge. Furthermore, we find that high N/O ratios are higher for less luminous PNe. In M 32, all PNe have a large N/O ratio, indicating that the stellar nitrogen abundance is enhanced in this galaxy. We have also compared the PN evolution in the different galactic systems by constructing diagrams that are independent of abundances, and have found strikingly different behaviours of the various samples. In order to help in the interpretation of these data, we have constructed a grid of expanding, PN photoionization models in which the central stars evolve according to the evolutionary tracks of Blöcker (1995). These models show that the apparent spectroscopic properties of PNe are extremely dependent, not only on the central stars, but also on the masses and expansion velocities of the nebular envelopes. The main conclusion of the confrontation of the observed samples with the model grids is that the PN populations are indeed not the same in the various parent galaxies. Both stars and nebulae are different. In particular, the central stars of the Send offprint requests to: Stasińska Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http: //cdsweb.u-strasbg.fr/Abstract.html Magellanic Clouds PNe are shown to evolve differently from the hydrogen burning stellar evolutionary models of Blöcker (1995). In the Galactic bulge, on the other hand, the behaviour of the observed PNe is roughly compatible with the theoretical stellar evolutionary tracks. The case of M 31 is not quite clear, and additional observations are necessary. It seems that the central star mass distribution is narrower for the M 31 PNe than for the Galactic bulge PNe. We show that spectroscopy of complete samples of PNe down to a factor 100 below the maximum luminosity would help to better characterize the PN central star mass distribution.

The Galactic Disk Distribution of Dust Emission Features in Planetary Nebulae

Symposium - International Astronomical Union, 1999

The properties of the carbon and oxygen chemical balance in planetary nebulae (PNe) are analysed through mid infrared spectroscopy of warm dust emission features in a sample of 72 objects. The adoption of a statistical distance scale shows that the galactic disk distribution of warm dust types in PNe is rather homogeneous with height over the galactic plane, and that there is a trend for the proportion of PNe with O rich dust signatures to decrease with galactocentric radius. Models of the galactic distribution of PNe compositions require a minimum progenitor mass of 1.2M⊙, although the observational constraints suffer from the smallness of the sample. This initial investigation is however an incentive to pursue the use of warm dust emission in PNe to study their progenitor population in various galactic environments.

Planetary Nebulae in the Solar Neighbourhood: Statistics, Distance Scale and Luminosity Function

2008

An accurate census of the nearest planetary nebulae (PNe) is needed for calculations of the total number, space density, scale height, and birth rate of PNe in the Galaxy, to understand the dynamics of an evolving nebula and its relationship to the cooling history of the central star, and also to provide an unbiased sample to investigate the frequency of binary central stars and their role in the formation and shaping of these objects. This study presents the most refined volume-limited survey of PNe known to date. Integrated H-alpha fluxes for over 400 mostly evolved PNe are presented, based primarily on data from the Southern H-alpha Sky Survey Atlas (SHASSA) and the Virginia Tech Spectral-Line Survey (VTSS). Aperture photometry on the digital images was performed to extract H-alpha+[NII] fluxes. The [NII] contribution was then de-convolved using literature data, new data from slit spectra, or spectrophotometric data from the Wisconsin H-Alpha Mapper (WHAM) also obtained as part of this project. Comparison with previous work shows that the flux scale presented here has no significant zero-point error. The H-alpha fluxes are used to determine new Zanstra temperatures for those PNe with accurate central star photometry, calculating surface-brightness distances for each PN in the sample, and in conjunction with accurate [OIII] fluxes, new absolute PN magnitudes for delineating the faint end of the PN luminosity function. A spectroscopic survey of a range of MASH PNe is also presented. New emission-line intensities for 60 PNe are given, including a preliminary discussion of the chemical abundances of this sample. New distances have been determined for a large number of PNe, by either critically examining the literature, or by deriving new extinction and kinematic distances where suitable. For all PNe not amenable to these approaches, distances were estimated from a new H-alpha surface brightness-radius (SB-r) relation. The Hα SB-r relation covers >6 dex in SB, and while the spread in SB is ˜1 dex at a given radius, optically thick (mainly bipolar and bipolar-core) PNe tend to populate the upper bound of the trend, while common-envelope PNe and high-excitation PNe fall along the lower boundary in SB-r space. Using sub-trends has allowed more precision in the determination of distances, as good as ±22% in the case of high-excitation PNe. The adopted SB-r zero point, set from 122 galactic calibrators, recovers the distances to the LMC, SMC and the Sagittarius dSph galaxy to within 5%. With distances to all nearby PNe, I have generated the most accurate volume-limited sample of PNe (D ≤ 1.0 kpc) yet considered, containing ˜56 PNe. An extension sample to 2.0 kpc contains ˜210 PNe. An accurate database of parameters for nearly all of these objects is presented, providing integrated fluxes, diameters, morphological classifications, distances, ionized masses, expansion velocities, kinematic ages, chemical abundances, and central star properties for each PN in this volume-limited sample. Details are also given on a number of misclassified 'PNe' which contaminate the local volume, including, amongst others, Abell 35, DHW 5, Sh 2-68, Sh 2-174, Hewett 1, RE 1738+665, PG 0108+101, PG 0109+111, PHL 932 and EGB 5. The observation that known close-binary PNe fall on a particular trend in SB-r space, is suggestive that these form a separate population to the majority of PNe. Recent conclusions that the great majority (or all) PNe go through a common-envelope phase are not supported at this point in time, though there is no doubt a modest frequency of common-envelope events has occurred in the solar neighbourhood. The exact number awaits a full multiplicity census of all objects within this volume. A preliminary estimate of the binary frequency of PN central stars in the solar neighbourhood is ˜52-58%, and hence I conclude that it is possible for single stars to produce PNe. A deep local PN luminosity function is presented, extending to 10 magnitudes below the bright PN cutoff magnitude, M*. The local [OIII] PNLF is seen to be much more bottom-heavy than previously recognised, with up to half of all PNe being fainter than 7 mag below M*. An exponential increase in PN numbers occurs to ˜8.3 mag below M*, where a marked turnover in the PNLF is seen. The very faintest PNe may represent a population of low-mass objects with low-luminosity central stars. New estimates for the number density, scale height, birth rate, and total number of Galactic PNe, as extrapolated from the solar neighbourhood sample, are also given. The total Galactic population is estimated to be 24,000 ± 4000 PNe with r <1.5 pc, and 13,000 ± 2000 PNe with r <0.9 pc. The MW/LMC luminosity ratio implies a total LMC PN population of ˜2400. Evidently many more PNe remain to be discovered in this system. The observed Galactic population leads to a PN birthrate of 0.8 ± 0.3 x 10-12 pc-3yr-1, fully consistent within the errors with the birthrate of white dwarfs. A remarkable bow-shock nebula around a previously unnoticed, bright, nova-like cataclysmic variable, V341 Ara, has also been discovered as part of this study. The star has a high space motion, leading to the formation of the parabolic bow-shock at the interaction of the disk wind and the ISM. The proximity of this nebula to the Sun suggests the space density of such objects may quite high. Similar nebulae might be found through a narrowband search around other CVs with significant proper motion.

A CO Survey of Young Planetary Nebulae 1

2008

We report the results of a sensitive survey of young planetary nebulae in the CO J = 2− 1 line that significantly increases the available data on warm, dense, molecular gas in the early phases of planetary nebula formation. The observations were made using the IRAM 30 m telescope with the 3×3 pixel Heterodyne Receiver Array (HERA). The array provides an effective means of discriminating the CO emission of planetary nebulae in the galactic plane from contaminating emission of interstellar clouds along the line of sight. 110 planetary nebulae were observed in the survey and 40 were detected. The results increase the number of young planetary nebulae with known CO emission by approximately a factor of two. The CO spectra yield radial velocities for the detected nebulae, about half of which have uncertain or no velocity measurements at optical wavelengths. The CO profiles range from parabolic to double-peaked, tracing the evolution of structure in the molecular gas. The line widths are ...