Structural and Immunoreactivity Properties of the SARS-CoV-2 Spike Protein upon the Development of an Inactivated Vaccine (original) (raw)

Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry

Biochemical and Biophysical Research Communications, 2004

The only severe acute respiratory syndrome (SARS) vaccine currently being tested in clinical trial consists of inactivated severe acute respiratory syndrome-associate coronavirus (SARS-CoV). However, limited information is available about host immune responses induced by the inactivated SARS vaccine. In this study, we demonstrated that SARS-CoV inactivated by b-propiolactone elicited high titers of antibodies in the immunized mice and rabbits that recognize the spike (S) protein, especially the receptor-binding domain (RBD) in the S1 region. The antisera from the immunized animals efficiently bound to the RBD and blocked binding of RBD to angiotensin-converting enzyme 2, the functional receptor on the susceptible cells for SARS-CoV. With a sensitive and quantitative single-cycle infection assay using pseudovirus bearing the SARS-CoV S protein, we demonstrated that mouse and rabbit antisera significantly inhibited S protein-mediated virus entry with mean 50% inhibitory titers of 1:7393 and 1:2060, respectively. These data suggest that the RBD of S protein is a major neutralization determinant in the inactivated SARS vaccine which can induce potent neutralizing antibodies to block SARS-CoV entry. However, caution should be taken in using the inactivated SARS-CoV as a vaccine since it may also cause harmful immune and/or inflammatory responses.

SARS-CoV-2 spike protein arrested in the closed state induces potent neutralizing responses

2021

The majority of SARS-CoV-2 vaccines in use or in advanced clinical development are based on the viral spike protein (S) as their immunogen. S is present on virions as pre-fusion trimers in which the receptor binding domain (RBD) is stochastically open or closed. Neutralizing antibodies have been described that act against both open and closed conformations. The long-term success of vaccination strategies will depend upon inducing antibodies that provide long-lasting broad immunity against evolving, circulating SARS-CoV-2 strains, while avoiding the risk of antibody dependent enhancement as observed with other Coronavirus vaccines. Here we have assessed the results of immunization in a mouse model using an S protein trimer that is arrested in the closed state to prevent exposure of the receptor binding site and therefore interaction with the receptor. We compared this with a range of other modified S protein constructs, including representatives used in current vaccines. We found tha...

An immunoinformatics study on the spike protein of SARS-CoV-2 revealing potential epitopes as vaccine candidates

Heliyon, 2020

Background: The pandemic situation of SARS-CoV-2 infection has sparked global concern due to the disease COVID-19 caused by it. Since the first cluster of confirmed cases in China in December 2019, the infection has been reported across the continents and inflicted upon a substantial number of populations. Method: This study is focused on immunoinformatics analyses of the SARS-CoV-2 spike glycoprotein (S protein) which is key for the viral attachment to human host cells. Computational analyses were carried out for the prediction of B-cell and T-cell (MHC class I and II) epitopes of S protein and the analyses were extended further for the prediction of their immunogenic properties. The interaction and binding affinity of T-cell epitopes with HLA-B7 were also investigated by molecular docking. Result: Three distinct epitopes for vaccine design were predicted from the sequence of S protein. The potential Bcell epitope was KNHTSPDVDLG possessing the highest antigenicity score of 1.4039 among other B-cell epitopes. T-cell epitope for human MHC class I was VVVLSFELL with an antigenicity score of 1.0909 and binding ability to 29 MHC-I alleles. The predicted T-cell epitope for human MHC class II molecule was VVIGIVNNT with a corresponding 1.3063 antigenicity score, less digesting enzymes, and 7 MHC-II alleles binding ability. All these three peptides were predicted to be highly antigenic, non-allergenic, and non-toxic. Analyses of the physiochemical properties of these predicted epitopes indicate their stable nature for plausible vaccine design. Furthermore, molecular docking investigation between the MHC class-I epitopes and human HLA-B7 reflects the stable interaction with high affinity among them. Conclusion: The present study posits three potential epitopes of S protein of SARS-CoV-2 predicted by immunoinformatic methods based on their immunogenic properties and interactions with the host counterpart that can facilitate the development of vaccine against SARS-CoV-2. This study can act as the springboard for the future development of the COVID-19 vaccine.

SARS-CoV-2 spike protein: pathogenesis, vaccines, and potential therapies

Infection

Purpose COVID-19 pandemic has emerged as a result of infection by the deadly pathogenic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causing enormous threats to humans. Coronaviruses are distinguished by a clove-like spike (S) protein, which plays a key role in viral pathogenesis, evolutions, and transmission. The objectives of this study are to investigate the distinctive structural features of SARS-CoV-2 S protein, its essential role in pathogenesis, and its use in the development of potential therapies and vaccines. Methodology A literature review was conducted to summarize, analyze, and interpret the available scientific data related to SARS-CoV-2 S protein in terms of characteristics, vaccines development and potential therapies. Results The data indicate that S protein subunits and their variable conformational states significantly affect the virus pathogenesis, infectivity, and evolutionary mutation. A considerable number of potential natural and synthetic therapies were proposed based on S protein. Additionally, neutralizing antibodies were recently approved for emergency use. Furthermore, several vaccines utilizing the S protein were developed. Conclusion A better understanding of S protein features, structure and mutations facilitate the recognition of the importance of SARS-CoV-2 S protein in viral infection, as well as the development of therapies and vaccines. The efficacy and safety of these therapeutic compounds and vaccines are still controversial. However, they may potentially reduce or prevent SARS-CoV-2 infection, leading to a significant reduction of the global health burden of this pandemic.

Structural and immunological characterization of the fusion core of the SARS-coronavirus spike protein

Acta Crystallographica Section A Foundations of Crystallography, 2005

forms between the S atom of the catalytic residue Cys-145 of the enzyme and one of the epoxide carbon atoms of the peptide, thereby blocking the active site of the enzyme. With an appropriate sequence, the peptide also has its side chains nicely fitted into in the specificity pockets of the enzyme. These results form the structural basis for our suggestion that the aza-peptide epoxide is a potential inhibitor of SARS-CoV M pro worthy of further evaluation as in the development of leads for anti-SARS agents.

Early immune response in mice immunized with a semi-split inactivated vaccine against SARS-CoV-2 containing S protein-free particles and subunit S protein

2020

The development of a vaccine against COVID-19 is a hot topic for many research laboratories all over the world. Our aim was to design a semi-split inactivated vaccine offering a wide range of multi-epitope determinants important for the immune system including not only the spike (S) protein but also the envelope, membrane and nucleocapsid proteins. We designed a semi-split vaccine prototype consisting of S protein-depleted viral particles and free S protein. Next, we investigated its immunogenic potential in BALB/c mice. The animals were immunized intradermally or intramuscularly with the dose adjusted with buffer or addition of aluminum hydroxide, respectively. The antibody response was evaluated by plasma analysis at 7 days after the first or second dose. The immune cell response was studied by flow cytometry analysis of splenocytes. The data showed a very early onset of both S protein-specific antibodies and virus-neutralizing antibodies at 90% inhibition regardless of the route ...

SARS-CoV-2 SPIKE PROTEIN: an optimal immunological target for vaccines

Journal of Translational Medicine, 2020

COVID-19 has rapidly spread all over the world, progressing into a pandemic. This situation has urgently impelled many companies and public research institutes to concentrate their efforts on research for effective therapeutics. Here, we outline the strategies and targets currently adopted in developing a vaccine against SARS-CoV-2. Based on previous evidence and experience with SARS and MERS, the primary focus has been the Spike protein, considered as the ideal target for COVID-19 immunotherapies.

Introduction of two prolines and removal of the polybasic cleavage site leads to optimal efficacy of a recombinant spike based SARS-CoV-2 vaccine in the mouse model

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the prime target for vaccine development. The spike protein mediates both binding to host cells and membrane fusion and is also so far the only known viral target of neutralizing antibodies. Coronavirus spike proteins are large trimers that are relatively instable, a feature that might be enhanced by the presence of a polybasic cleavage site in the SARS-CoV-2 spike. Exchange of K986 and V987 to prolines has been shown to stabilize the trimers of SARS-CoV-1 and the Middle Eastern respiratory syndrome coronavirus spikes. Here, we test multiple versions of a soluble spike protein for their immunogenicity and protective effect against SARS-CoV-2 challenge in a mouse model that transiently expresses human angiotensin converting enzyme 2 via adenovirus transduction. Variants tested include spike protein with a deleted polybasic cleavage site, the proline mutations, a combination thereo...