Brain regions associated with successful and unsuccessful retrieval of verbal episodic memory as revealed by divided attention (original) (raw)

Abstract

Which brain regions are implicated when words are retrieved under divided attention, and what does this tell us about attentional and memory processes needed for retrieval? To address these questions we used f MRI to examine brain regions associated with auditory recognition performed under full and divided attention (DA). We asked young adults to encode words presented auditorily under full attention (FA), and following this, asked them to recognize studied words while in the scanner. Attention was divided at retrieval by asking participants to perform either an animacy task to words, or odd-digit identification task to numbers presented visually, concurrently with the recognition task. Retrieval was disrupted significantly by the word-, but not number-based concurrent task. A corresponding decrease in brain activity was observed in right hippocampus, bilateral parietal cortex, and left precuneus, thus demonstrating, for the first time, involvement of these regions in recognition under DA at retrieval. Increases in activation of left prefrontal cortex (PFC), associated with phonological processing, were observed in the word-compared to number-based DA condition. Results suggest that the medial temporal lobe (MTL) and neo-cortical components of retrieval, believed to form the basis of episodic memory traces, are disrupted when phonological processing regions in left PFC are engaged simultaneously by another task. Results also support a component-process model of retrieval which posits that MTL-mediated retrieval does not compete for general cognitive resources but does compete for specific structural representations.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (58)

  1. Anderson, N. D., Craik, F. I. M., & Naveh-Benjamin, M. (1998). The attentional demands of encoding and retrieval in younger and older adults. Part I. Evidence from divided attention costs. Psychology and Aging, 13, 405-423.
  2. Anderson, N. D., Iidaka, T., Cabeza, R., Kapur, S., McIntosh, A. R., & Craik, F. I. M. (2000). The effects of divided attention on encoding- and retrieval-related brain activity: A PET study of younger and older adults. Journal of Cognitive Neuroscience, 12, 775-792.
  3. Anderson, M. C., Ochsner, K. N., Kuhl, B., Cooper, J., Robertson, E., Gabrielie, S. W., et al. (2004). Neural systems underlying the sup- pression of unwanted memories. Science, 303, 232-234.
  4. Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A., & Katz, S. (1996). Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography. Psy- chological Science, 7, 25-31.
  5. Baddeley, A. D. (1992). Working memory: The interface between memory and cognition. Journal of Cognitive Neuroscience, 4, 281-288.
  6. Baddeley, A. D., Lewis, V., Eldridge, M., & Thomson, N. (1984). Atten- tion and retrieval from long-term memory. Journal of Experimental Psychology: General, 113, 518-540.
  7. Buckner, R. L. (1996). Beyond HERA: Contributions of specific prefrontal brain areas to long term memory retrieval. Psychonomic Bulletin and Review, 3, 149-158.
  8. Buckner, R. L., Petersen, S. E., Ojemann, J. G., Miezin, F. M., Squire, L. R., & Raichle, M. E. (1995). Functional anatomical studies of explicit and implicit memory retrieval tasks. Journal of Neuroscience, 15, 12-29.
  9. Buckner, R. L., Raichle, M. E., Miezin, F. M., & Petersen, S. E. (1996). Functional anatomic studies of memory retrieval for auditory words and visual pictures. Journal of Neuroscience, 16, 6219-6235.
  10. Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuro- science, 12, 1-47.
  11. Cahill, L., Haier, R. J., Fallon, J., Alkire, M. T., Tang, C., Keator, D., et al. (1996). Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proceedings of the National Academy of Science of the United States of America, 93, 8016-8021.
  12. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1991). Selective and divided attention during visual discrimi- nations of shape, color, and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience, 11, 2383-2402.
  13. Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomed- ical Research, 29, 162-173.
  14. Cox, R. W., & Hyde, J. S. (1997). Software tools for analysis and visu- alization of FMRI data. NMR in Biomedicine, 10, 171-178.
  15. Craik, F. I. M. (2001). The effects of dividing attention on encoding and retrieval processes. In H. L. Roediger, J. S. Nairne, I. Neath, & A. M. Suprenant (Eds.), The nature of remembering: Essays in honor of Robert G. Crowder. Washington, DC: American Psychological Asso- ciation, pp. 55-68.
  16. Craik, F. I. M., Govoni, R., Naveh-Benjamin, M., & Anderson, N. D. (1996). The effects of divided attention on encoding and retrieval processes in human memory. Journal of Experimental Psychology: General, 125, 159-180.
  17. Crosson, B., Rao, S. M., Woodley, A., Rosen, A., Bobholz, J. A., Mayer, A., et al. (1999). Mapping of semantic, phonological, and orthographic verbal working memory in normal adults with functional magnetic resonance imaging. Neuropsychology, 13, 171-187.
  18. D'Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature, 378, 279-281.
  19. Dobbins, I. G., Foley, H., Schacter, D. L., & Wagner, A. D. (2002). Exec- utive control during episodic retrieval: Multiple prefrontal processes subserve source memory. Neuron, 35, 989-996.
  20. Dobbins, I. G., Rice, H. J., Wagner, A. D., & Schacter, D. L. (2003). Memory orientation and success: Separable neurocognitive components underlying episodic recognition. Neuropsychologia, 41, 318-333.
  21. Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y., & Engel, S. A. (2000). Remembering episodes: A selective role for the hippocampus during retrieval. Nature Neuroscience, 3, 1149- 1152.
  22. Fernandes, M. A., Davidson, P., Glisky, E., & Moscovitch, M. (2004). Level of frontal and temporal lobe function and susceptibility to di- vided attention effects at retrieval in older adults. Neuropsychology, 18(3), 514-525.
  23. Fernandes, M. A., & Moscovitch, M. (2000). Divided attention and memory: Evidence of substantial interference effects at retrieval and encoding. Journal of Experimental Psychology: General, 129, 155- 176. Fernandes, M. A., & Moscovitch, M. (2002). Factors modulating the effect of divided attention during retrieval of words. Memory and Cognition, 30, 731-744.
  24. Fernandes, M. A., & Moscovitch, M. (2003). Interference effects from divided attention during retrieval in younger and older adults. Psy- chology and Aging, 18, 219-230.
  25. Fernandes, M. A., Priselac, S., & Moscovitch, M. (2005). Memory inter- ference from divided attention at retrieval: The importance of phonol- ogy. Manuscript in preparation.
  26. Fletcher, P. C., Frith, C. D., Grasby, P. M., Shallice, T., Frackowiak, R. S., & Dolan, R. J. (1995). Brain systems for encoding and retrieval of auditory-verbal memory. An in vivo study in humans. Brain, 118, 401-416.
  27. Fletcher, P. C., Shallice, T., Frith, C. D., Frackowiak, R. S., & Dolan, R. J. (1998). The functional roles of prefrontal cortex in episodic memory. Part II. Retrieval. Brain, 121, 1249-1256.
  28. Francis, W. N., & Kucera, H. (1982). Frequency analysis of English usage. Boston: Houghton Mifflin Company.
  29. Glover, G. H., & Lai, S. (1998). Self-navigated spiral fMRI: Interleaved versus single-shot. Magnetic Resonance in Medicine, 39, 361-368.
  30. Grasby, P. M., Frith, C. D., Friston, K. J., Bench, C., Frackowiak, R. S. J., & Dolan, R. J. (1993). Functional mapping of brain areas implicated in auditory-verbal memory function. Brain, 116, 1-20.
  31. Grady, C. L., McIntosh, A. R., Horwitz, B., Maisog, J. M., Ungerleider, L. G., Mentis, M. J., et al. (1995). Age-related reductions in human recognition memory due to impaired encoding. Science, 269, 218- 221.
  32. Habib, R., McIntosh, A. R., Wheeler, M. A., & Tulving, E. (2003). Mem- ory encoding and hippocampally-based novelty/familiarity discrimina- tion networks. Neuropsychologia, 41, 271-279.
  33. Iidaka, T., Anderson, N. D., Kapur, S., Cabeza, R., & Craik, F. I. M. (2000). The effect of divided attention on encoding and retrieval in episodic memory revealed by positron emission tomography. Journal of Cognitive Neuroscience, 12, 267-280.
  34. Johannsen, P., Jakobsen, J., Bruhn, P., Hansen, S. B., Gee, A., Stodkilde- Jorgensen, H., et al. (1997). Cortical sites of sustained and divided attention in normal elderly humans. Neuroimage, 6, 145-155.
  35. Kapur, S., Craik, F. I. M., Jones, C., Brown, G. M., Houle, S., & Tulv- ing, E. (1995). Functional role of the prefrontal cortex in retrieval of memories: A PET study. Neuroreport, 6, 1880-1884.
  36. Kensinger, E. A., Clarke, R. J., & Corkin, S. (2003). What neural cor- relates underlie successful encoding and retrieval? A functional mag- netic resonance imaging study using a divided attention paradigm. Journal of Neuroscience, 23, 2407-2415.
  37. Kirk, R. E. (1995). Experimental design: Procedures for the behavioral sciences (3rd ed.). Pacific Grove: Brooks/Cole Publishing Company.
  38. Klingberg, T. (1998). Concurrent performance of two working mem- ory tasks: Potential mechanism of interfrence. Cerebral Cortex, 8, 593-601.
  39. Krause, B. J., Schmidt, D., Mottaghy, F. M., Taylor, J., Halsband, U., Herzog, H., et al. (1999). Brain, 122, 255-263.
  40. Madden, D. J., Turkington, T. G., Provenzale, J. M., Hawk, T. C., Hoff- man, J. M., & Coleman, R. E. (1997). Selective and divided visual attention: Age-related changes in regional cerebral blood flow mea- sured by H 2 15 O PET. Human Brain Mapping, 5, 389-409.
  41. Moscovitch, M. (1992). Memory and working-with-memory: A compo- nent process model based on modules and central systems. Journal of Cognitive Neurosciences, 4, 257-267.
  42. Moscovitch, M., Fernandes, M. A., & Troyer, A. (2001). Working-with- memory and cognitive resources: A component-process account of divided attention and memory. In M. Naveh-Benjamin, M. Moscov- itch, & H. L. Roediger III (Eds.), Perspectives on human memory and cognitive aging (pp. 171-192). New York: Psychology Press.
  43. Naveh-Benjamin, M., Craik, F. I. M., Guez, J., & Dori, H. (1998). Effects of divided attention on encoding and retrieval processes in human memory: Further support for an asymmetry. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 1091-1104.
  44. Nyberg, L., McIntosh, A. R., Houle, S., Nilsson, L.-G., & Tulving, E. (1996). Activation of medial temporal structures during episodic mem- ory retrieval. Nature, 380, 715-717.
  45. Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Science of the United States of America, 87, 9868-9872.
  46. Paulesu, E., Frith, C. D., & Frackowiak, R. S. J. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342-345.
  47. Roland, P. E., & Gulyas, B. (1995). Visual memory, visual imagery, and visual recognition of large field patterns by the human brain: Func- tional anatomy by positron emission tomography. Cerebral Cortex, 5, 79-93.
  48. Rudge, P., & Warrington, E. (1993). Selective impairment of memory and visual perception in splenial tumors. Brain, 114, 349-360.
  49. Rugg, M. D., Fletcher, P. C., Frith, C. D., Frackowiak, R. S. J., & Dolan, R. J. (1996). Differential activation of the prefrontal cortex in suc- cessful and unsuccessful memory retrieval. Brain, 119, 2073-2084.
  50. Schacter, D. L., Reiman, E., Uecker, A., Polster, M. R., Yun, L. S., & Cooper, L. A. (1995). Brain regions associated with retrieval of structurally coherent visual information. Nature, 376, 587-590.
  51. Schacter, D. L., Savage, C. R., Alpert, N. M., Rauch, S. L., & Albert, M. S. (1996). The role of the hippocampus and frontal cortex in age- related memory changes: A PET study. Neuroreport, 7, 1165-1169.
  52. Shallice, T., Fletcher, P., Frith, C. D., Grasby, P., Frackowiak, R. S. J., & Dolan, R. J. (1994). Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature, 368, 633-635.
  53. Squire, L. R., Ojemann, J. G., Miezin, F. M., Petersen, S. E., Videen, T. O., & Raichle, M. E. (1992). Activation of the hippocampus in normal humans: A functional anatomical study of memory. Proceedings of the National Academy of Science of the United States of America, 89, 1837-1841.
  54. Stark, C. E. L., & Squire, L. R. (2000). Functional magnetic resonance imaging (fMRI) activity in the hippocampal region during recognition memory. Journal of Neuroscience, 20, 7776-7781.
  55. Talairach, J., & Tournoux, P. (1988). A co-planar sterotaxic atlas of the human brain. Stuttgart: Thieme.
  56. Tulving, E. (1983). Elements of episodic memory. New York: Oxford University Press.
  57. Ungerleider, L. G. (1995). Functional brain imaging studies of cortical mechanisms for memory. Science, 270, 769-775.
  58. Valenstein, E., Bowers, D., Varfaellie, M., Day, A., & Watson, R. T. (1987). Retrosplenial amnesia. Brain, 110, 1631-1646.