Nanoparticle synthesis in microreactors (original) (raw)
Related papers
Development in Microreactor Technology for Nanoparticle Synthesis
International Journal of Nanoscience, 2010
Microreactor technology is a new concept of chemical synthesis for nanoparticle production. The "state of the art" in microreactor fabrication and its application to the synthesis of nanoparticles is reviewed. The microfluidic concepts, the materials and technologies for microreactor manufacture, with particular emphasis on polymers and microreplication techniques, and their application to the synthesis of various nanomaterials in microreactors are presented. The unique synthesis properties of various nanoparticles using a microfluidic process as well as broader impact in term of nanomaterials engineering, i.e., selectivity and monodispersity, reduced amount of chemicals, fast reaction, minimum cost, a better control of the process, minimum waste and reduced amounts of reaction byproducts and improved safety, are discussed in comparison with the traditional wet-chemical batch synthesis approach.
Screening of nanoparticle properties in microfluidic syntheses
Nanotechnology Reviews, 2014
The possible diversity of nanoparticles is extremely high. This variability corresponds to a huge potential of possible functions in future materials and nanotechnical devices. Apart from rational designs, there is an urgent need for screening strategies for specific nanoparticle properties. Miniaturized screening techniques are challenged for efficient screening procedures. The review gives an overview on the possibilities of tuning and screening of nanoparticle properties and focuses on the application of microfluidic techniques for nanoparticle synthesis. Furthermore, the variation of parameters during the generation of nanoparticles and its connection with the resulting nanoparticle properties are highlighted as well. Among other microfluidic techniques, microsegmented flow is particularly promising for the synthesis of different types of homogeneous nanoparticles and offers interesting approaches for the screening of process parameters and nanoparticle properties. The tuning of...
Segmented Microfluidic Flow Reactors for Nanomaterial Synthesis
Nanomaterials
Microfluidic reactors have remarkably promoted the synthesis and investigation of advanced nanomaterials due to their continuous mode and accelerated heat/mass transfer. Notably, segmented microfluidic flow reactors (SMFRs) are an important class of microfluidic reactors that have been developed to accurately manipulate nanomaterial synthesis by further improvement of the residence time distributions and unique flow behaviors. This review provided a survey of the nanomaterial synthesis in SMFRs for the aspects of fluid dynamics, flow patterns, and mass transfer among and within distinct phases and provided examples of the synthesis of versatile nanomaterials via the use of different flow patterns.
Continuous flow synthesis of nanoparticles using ceramic microfluidic devices
Nanotechnology, 2010
A microfluidic system based on the low-temperature co-fired ceramics technology (LTCC) is proposed to reproducibly carry out a simple one-phase synthesis and functionalization of monodispersed gold nanoparticles. It takes advantage of the LTCC technology, offering a fast prototyping without the need to use sophisticated facilities, reducing significantly the cost and production time of microfluidic systems. Some other interesting advantages of the ceramic materials compared to glass, silicon or polymers are their versatility and chemical resistivity. The technology enables the construction of multilayered systems, which can integrate other mechanical, electronic and fluidic components in a single substrate. This approach allows rapid, easy, low cost and automated synthesis of the gold colloidal, thus it becomes a useful approach in the progression from laboratory scale to pilot-line scale processes, which is currently demanded.
Multi-step microfludic reactor for the synthesis of hybrid nanoparticles
Journal of Micromechanics and Microengineering, 2020
We introduce a multi-step microfluidic reactor for the synthesis of hybrid nanoparticles. As part of this study, nanoparticles composed of chitosan and iron-oxide are synthesized at room temperature by forming sequential droplets of reagents in the microreactor followed by merging and mixing them in a step by step process. The obtained nanoparticles were characterized by transmission electron microscopy, Fourier transform infrared spectrometry, and energy dispersive x-ray analysis. Results were compared with nanoparticles of the same composition synthesized with batch-wise conventional techniques. As a result, the obtained nanoparticles showed better size distribution. This microfluidic device can be used for the synthesis of other types of nanoparticles that require multi-step procedures.
Synthesis of micro and nanostructures in microfluidic systems
Chemical Society Reviews, 2010
In this critical review, we present an overview of the current progress in synthesis of micro and nanostructures by using microfluidics techniques. Emphasis is placed on processes that can be realized on chip, such as polymerization, precipitation, sol-gel, thermolysis and multistep processes. Continuous flow, microfluidic systems show particular promise in controlling size, shape and size distribution of synthesized micro and nanoparticles. Moreover, the use of microfluidics expands the synthesis space (e.g., temperature, pressure, reagents) to conditions not easily accessed in conventional batch procedures and thus, opens new methods for the realization of complex engineered nanostructures and new materials systems. This journal is
Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth
International Journal of Pharmaceutics, 2020
Using micro-sized channels to manipulate fluids is the essence of microfluidics which has wide applications from analytical chemistry to material science and cell biology research. Recently, using microfluidic-based devices for pharmaceutical research, in particular for the fabrication of micro-and nano-particles, has emerged as a new area of interest. The particles that can be prepared by microfluidic devices can range from micron size droplet-based emulsions to nano-sized drug loaded polymeric particles. Microfluidic technology poses unique advantages in terms of the high precision of the mixing regimes and control of fluids involved in formulation preparation. As a result of this, monodispersity of the particles prepared by microfluidics is often recognised as being a particularly advantageous feature in comparison to those prepared by conventional large-scale mixing methods. However, there is a range of practical drawbacks and challenges of using microfluidics as a direct micron-and nano-particle manufacturing method. Technological advances are still required before this type of processing can be translated for application by the pharmaceutical industry. This review focuses specifically on the application of microfluidics for pharmaceutical solid nanoparticle preparation and discusses the theoretical foundation of using the nanoprecipitation principle to generate particles and how this is translated into microfluidic design and operation.