A Practical Approach for Predicting Power in a Small-Scale Off-Grid Photovoltaic System using Machine Learning Algorithms (original) (raw)

2022, International Journal of Photoenergy

Climate change and the energy crisis substantially motivated the use and development of renewable energy resources. Solar power generation is being identified as the most promising and abundant source for bulk power generation. However, solar photovoltaic panel is heavily dependent on meteorological data of the installation site and weather fluctuations. To overcome these issues, collecting performance data at the remotely installed photovoltaic panel and predicting future power generation is important. The key objective of this paper is to develop a scaled-down prototype of an IoT-enabled datalogger for photovoltaic system that is installed in a remote location where human intervention is not possible due to harsh weather conditions or other circumstances. An Internet of Things platform is used to store and visualize the captured data from a standalone photovoltaic system. The collected data from the datalogger is used as a training set for machine learning algorithms. The estimati...

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.