Biological responses of two mytilid species to WAF of crude oil and dispersed crude oil (original) (raw)
Related papers
Helgoland Marine Research, 1999
The intensive development of industry and urban structures along the seashores of the world, as well as the immense increase in marine transportation and other activities, has resulted in the deposition of thousands of new chemicals and organic compounds, endangering the existence of organisms and ecosystems. The conventional single biomarker methods used in ecological assessment studies cannot provide an adequate base for environmental health assessment, management and sustainability planning. The present study uses a set of novel biochemical, physiological, cytogenetic and morphological methods to characterize the state of health of selected molluscs and fish along the shores of the German North Sea, as well as the Israeli Mediterranean and Red Sea. The methods include measurement of activity of multixenobiotic resistance-mediated transporter (MXRtr) and the system of active transport of organic anions (SATOA) as indicators of antixenobiotic defence; glutathione S-transferase (GST) activity as an indicator of biotransformation of xenobiotics; DNA unwinding as a marker of genotoxicity; micronucleus test for clastogenicity; levels of phagocytosis for immunotoxicity; cholinesterase (ChE) activity and level of catecholamines as indicators of neurotoxicity; permeability of external epithelia to anionic hydrophilic probe, intralysosomal accumulation of cationic amphiphilic probe and activity of non-specific esterases as indicators of cell/tissue viability. Complete histopathological examination was used for diagnostics of environmental pathology. The obtained data show that the activity of the defensive pumps, MXRtr and SATOA in the studied organisms was significantly higher in the surface epithelia of molluscs from a polluted site than that of the same species from control, unpolluted stations, providing clear evidence of response to stress. Enhanced frequency of DNA lesions (alkaline and acidic DNA unwinding) and micronucleus-containing cells was significantly higher in samples from polluted sites in comparison to those from the clean sites that exhibited genotoxic and clastogenic activity of the pollutants. In all the studied molluscs a negative correlation was found between the MXRtr levels of activity and the frequency of micronucleus-containing hemocytes. The expression of this was in accordance with the level of pollution. The complete histopathological examination demonstrates significantly higher frequencies of pathological alterations in organs of animals from polluted sites. A strong negative correlation was found between the frequency of these alterations and MXRtr activity in the same specimens. In addition to these parameters, a decrease in the viability was noted in molluscs from the polluted sites, but ChE activities remained similar at most sites. The methods applied in our study unmasked numerous early cryptic responses and negative alterations of health in populations of marine biota sampled from the polluted sites. This demonstrates that genotoxic, clastogenic and pathogenic xenobiotics are present and act in the studied sites and this knowledge can provide a reliable base for consideration for sustainable development.
Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2013
Baltic Sea blue mussels (Mytilus trossulus) were used as sentinel organisms to detect the biological effects of chemical contamination in the low salinity environment. Mussels naturally adapted to a salinity of ca. 6.0 PSU were caged for 30 days at four sites along an assumed pollution gradient (salinity ca. 4.5 PSU) in the vicinity of Finland's largest oil refinery and harbor Kilpilahti in the Gulf of Finland. Tissue concentrations and accumulation rates of especially organic contaminants (PAHs, PCBs and organotins) were clearly elevated at the innermost coastal stations near the harbor area. Biological effects of contaminant exposure on caged mussels were evaluated by measuring a suite of biomarkers including catalase, glutathione S-transferase, superoxide dismutase, glutathione reductase, lipid peroxidation, acetylcholinesterase activity and lysosomal membrane stability. Mussels transplanted near the harbor area were able to elevate their antioxidant defense in response to environmental contamination. Reduced morphometric condition index and soft tissue growth rate together with increased lipid peroxidation and low lysosomal membrane stability were also observed at the most contaminated site. The results suggest that caging of M. trossulus for four weeks at lower salinity is a feasible method for the detection of environmental pollution also in low salinity areas of the Baltic Sea.
Biological effects of the “ Erika ” oil spill on the common mussel (Mytilus edulis)
Aquatic Living Resources, 2004
A 3-year survey was made of several biological markers in mussels (Mytilus edulis) exposed in situ to the oil that came ashore after the wreck of the "Erika" tanker on the Brittany (France) coast in December 1999. The mussel response was assessed using a set of 7 biomarkers, most of them related to the metabolism of organic contaminants. After a series of validation tests, data was evaluated for only 5 biomarkers: acetylcholinesterase (AChE), glutathione S-transferase (GST), catalase (CAT), malondialdehyde (MDA) and deoxyribonucleic acid (DNA) adducts. No significant reductions in GST or CAT levels were observed, levels of DNA adducts and MDA were high during the 6 months immediately following the accident and levels of AChE were significantly lower during the first year of the survey suggesting a general stress. A simple multivariate graphic method, the integrated biomarker response index, was used to combine 4 of the 5 validated biomarkers and quantify the degree of impact on mussels at different sites. The results show that mussel populations were affected by the oil spill only during the first year after the event.
Monitoring of the impact of Prestige oil spill on Mytilus galloprovincialis from Galician coast
Environment International, 2006
In November 2002, the Prestige oil tanker was wrecked in front of Galician coast (NW of Spain), spilling near 63,000 tons of heavy oil until February 2003. Contamination produced was very extensive (70% of Galician beaches were reached by the oil) but heterogeneous, alternating intensely affected zones with neighbour locations where the repercussion was minimal. The objective of this study was to monitor sea environment contamination caused by Prestige oil spill during an 11-month period (August 2003 -June 2004, nine samplings) in two locations of Galician coast with different geographical properties (Lira and Ancoradoiro beaches), by means of chemical determination of total polycyclic aromatic hydrocarbons (TPAH) in seawater, and using as exposure biomarker TPAH content in mussel (Mytilus galloprovincialis) tissues, and as effect biomarker DNA damage in mussel gills, evaluated by the comet assay. In addition, recovery ability of the mussels was determined after a 7-day stay in the laboratory. TPAH contents in seawater were very high in the earliest samplings, but then they maintained below 200 ng L À 1 , similar to reference seawater. However, TPAH levels in mussel tissues were more variable: they increased again from January 2004, probably due to the adverse meteorological conditions that turned over the sea bottom and dispersed the oil accumulated in sediments. In most samplings, these levels decreased during the recovery stage. DNA damage in oil-exposed mussels was significantly higher than in reference mussels, both before and after the recovery phase, but they did not differ to one another. Comet tail length was slightly reduced during the recovery stage, indicative of a certain DNA repair in exposed mussels. This study showed up the importance of monitoring sea contamination events during an extended time, not only in evaluating the presence of the contaminants in the environment but also in determining their bioaccumulation and their effect on the exposed organisms. D
Chemosphere, 2015
Persistent chemicals and emerging pollutants are continuously detected in marine waters and biota. Out of these, polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCs) are significant contaminants with decades of presence in the marine environment. The Mediterranean Sea is an ecosystem directly affected by a variety of anthropogenic activities including industry, municipal, touristic, commercial and agricultural. The Mediterranean mussel (Mytilus galloprovincialis) is a filter feeder, which presents wide distribution. In this regard, the specific organism was used as a biological indicator for the monitoring and evaluation of pollution in the studied areas with focus on the mentioned chemical groups. Pristine Turkish sites with minimum effect from anthropogenic activities, in contrast with Greek sites which were subjected to heavy industrial and shipping activity, were selected. A gas chromatographic tandem mass spectrometric method (GC-MS/MS) was developed and validated to monitor 34 compounds (16 EPA priority PAHs and 18 OCs). Analyses of mussel samples in 2011 from sites with the limited anthropogenic pollution shores have shown the occurrence of 11 pollutants (6 PAHs, 5 OCs), while in the samples from sites with intensive activity and expected pollution, 12 PAHs and 6 OCs were detected. Biochemical and biological responses studied only in mussels samples from the sites with the highest contamination showed a situation that was under strong seasonal influence. The intensity of the response was also influenced by deployment duration. Noteworthy correlations were detected among biochemical/biological effects and between mussel body burden and these effects. Continuous monitoring of priority pollutants of East Mediterranean Sea is vital both for ecological and human risk assessment purposes.
Marine Ecology Progress Series, 2006
In November 2002 the tanker 'Prestige' sunk in front of the Galician coast (NW Iberian Peninsula). As a result, > 60 000 t of heavy fuel oil leaked into the sea, affecting >1000 km of coastline. In order to assess the effects of the oil spill on coastal ecosystems, mussels Mytilus galloprovincialis were sampled (April, July and September 2003) in 17 locations along the Galician and Bay of Biscay coasts. In this study, 3 biomarkers were assessed: lysosomal responses as changes in the lysosomal structure and in the lysosomal membrane stability, accumulation of intracellular neutral lipids and peroxisome proliferation as induction of acyl-CoA oxidase (AOX) activity. Mussel flesh condition index and gonad developmental stages were assessed as supporting parameters. Lysosomal membrane stability was reduced in mussels from all locations, indicating disturbed health, especially in mussels from all Galician locations. Similarly, lysosomal enlargement was observed in most locations, as shown by relatively low values of the surface-to-volume ratio, although the volume density of lysosomes was low due to decreased lysosomal numbers. Overall, intracellular accumulation of neutral lipids was conspicuous in digestive tubules of mussels collected in July and was increased further in September. AOX induction was detectable in mussels sampled in April, except for those collected in Galicia. In July mussels from the most impacted stations in Galicia, Caldebarcos and Camelle, showed the highest AOX values. In conclusion, the biomarkers employed detected exposure to toxic chemicals and a disturbed status of health in mussels from the northern Iberian Peninsula after the 'Prestige' oil spill and will allow assessment of the long-term effects of the spill on the coastal ecosystems.
The Algerian west coast is the prime recipient of several forms of pollution; hence, the necessity for an impact assessment of this coastal pollution using a suite of recommended marine biomarkers, including lysosomal membrane stability in living cells by the Neutral Red Retention Time (NRRT) method, the evaluation of micronucleus (MN) frequency, and the determination of acetylcholinesterase (AChE) activity in mussels Mytilus galloprovincialis, sampled from the large, polluted Oran Harbour (OH) and the Maârouf (Mrf) marine mussel farm between July 2005 and April 2006. The difference in the variations of the annual physical parameters between OH and Mrf corresponds to the influence of the domestic and industrial sewage discharged by the city of Oran. The biological data of the mussels (condition index, protein content) recorded at both sites were related to their natural reproductive cycle. This indicated that intrinsic variation between the sites due to different mussel development phases was minimal. The variation in the AChE activity of some organs of OH and Mrf mussels, with minimal inhibition
Ecotoxicology, 2004
In December 2000, the ship ‘Coral Bulker’ ran aground at the entrance of the port of Viana do Castelo (North–west coast of Portugal). A large amount of fuel oil was spilled and part of it reached the shore. To evaluate the spatial and temporal impact of this oil spill, a field study, and several laboratory toxicity tests were performed using Mytilus galloprovincialis as biological indicator of environmental contamination and the biomarkers glutathione S-transferases (GSTs) and acetylcholinesterase (AChE) as indicative criteria. Fifteen days after the oil spill, mussels collected at stations located near the ship presented higher and lower values of GSTs and AChE activity, respectively. These results, and those obtained in the laboratory toxicity tests, evidence that these biomarkers were sensitive indicators of exposure to this kind of pollution and were able to monitor a spatial impact of the oil spill of at least 10 km, confirming the higher level of contamination near the ship and a contamination gradient along the sampling stations. One year after the accident, such a contamination gradient was no longer evident. This study highlight the potential suitability of a biomarker approach for assessing spatial and temporal impacts of marine pollution accidents, such as fuel oil spills, suggesting the inclusion of these biomarkers in risk assessment studies, as cost-effective and early warning recognized tools. Major advantages and limitations of the biomarker approach used in this study are further discussed.
Living Indicators of Sea Pollution: Mytilus Galloprovincialis
In this research, the main asked question was; "how does the values of the ratio of the mass of dioxin (an organic compound) to the wet mass of mussels -measured in pgTEQ/gwet- changes when the habitat of Mytilus galloprovincialis mussel (either Black sea, Aegean sea or Marmara sea) changes, by calculating with DR CALUX (abbreviation for Dioxin Responsive Chemical-Activated Luciferase gene eXpression) method under the same gathering time, same season, distance to the lakeshore and depth of the sea where the population of mussels live?". In order to answer that question, this paper used M. galloprovincialis mussels as biotic indicators of dioxin levels that supposedly showed the sea pollution levels of the seas. The mussels, sized 5±1 cm, are gathered from three different locations; Tuzla, "stanbul; Karşıyaka, "zmir and Amasra. Then their dioxin levels are calculated using a method called DR CALUX that used specialized cells to produce light when it attached to a dioxin molecule. After the readings on luminometer, the results arrived. Showing that "stanbul, with mean values of 1.56 pgTEQ per wet mass of mussel, was the highest in the content of dioxin and "zmir followed up with a value of 0.86 pgTEQ/wet mass and at last Amasra was the least that resulted as 0.43 pgTEQ/wet mass that showed significance with p value smaller than 0.001 with ANOVA test. All in all, because of the population differences and the different industrial growth factors affecting the cities they yielded different results in dioxin concentration. Although the results were minimal than other countries, such dioxin level suggests that a serious contaminant was present . As a result, this research concluded by stating the relationship that the mussels are cheap and indirect biotic indicators for detection of especially in determining cancer causing agent dioxin level sea pollutions.