An improved snow scheme for the ECMWF land surface model: description and offline validation (original) (raw)

Abstract

A new snow scheme for the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model has been tested and validated. The scheme includes a new parameterization of snow density, incorporating a liquid water reservoir, and revised formulations for the sub-grid snow cover fraction and snow albedo. Offline validation (covering a wide range of spatial and temporal scales) includes simulations for several observation sites from the Snow Models Intercomparison Project-2 (SnowMIP2), global simulations driven by the meteorological forcing from the Global Soil Wetness Project-2 (GSWP2), and by ECMWF ERA-Interim re-analysis. This snow scheme was introduced in the ECMWF operational forecast system in September 2009 (CY35R3). SnowMIP2 simulations revealed that the original snow scheme had a systematic early and late prediction of the final ablation in forest and open sites, respectively. The NEW scheme reduces the negative timing bias in forest plots from 15 to 1 day and the positive bias in open plots from 11 to 2 days. The new snow density parameterization has a good agreement with observations, resulting in an augmented insulation effect of the snowpack. The increased insulation and the new exposed and shaded albedo change the surface energy fluxes. There is a reduction of the basal heat flux that reduces the cooling of the underlying soil, which is warmer in NEW than in CTR (old scheme) during the cold season. Thus, reduced soil freezing decreased the surface runoff and increased soil water storage. The mean annual cycles of runoff and TSWV (terrestrial water storage) analyzed for the Ob and Mackenzie basins are closer to the observations in NEW. In ten Northern hemisphere basins, there is an average reduction of the monthly runoff RMSE from 0.75 to 0.51 mm day-1 when comparing CTR and NEW, respectively. These results illustrate the importance of the snow insulation on the hydrological cycle, even at regional scales. On a hemispheric scale, the new snow scheme reduces the negative bias of snow-covered area, especially during spring. On a daily scale, using NOAA/NESDIS snow cover data, the early ablation in CTR is reduced by a factor of two in some identified regions over the Northern Hemisphere. The changes in snow-covered area are closely related with the changes in surface albedo. The original snow scheme had a systematic negative bias in surface albedo, when compared against MODIS remote sensing data. The new scheme reduced the albedo bias, consequently reducing the spatial (only over snow covered area) and time (October to November) averaged surface net shortwave radiation bias from +7.1 W m-2 in CTR to -1.8 W m-2 in NEW. For each validation dataset, sensitivity experiments were performed to assess the impact of the new components of the presented snow scheme. Prognostic and diagnostic SLW (snow liquid water) representations display similar skill in SnowMIP2 (RMSE of SWE) and GSWP2 (RMSE of basin runoff) simulations. Simulated improvements of SWE in SnowMIP2 locations were mainly due to SLW representation on forest sites and due to the new exposed albedo on open sites. The increased snow insulation effect, due to the new snow density parameterization, had an important role on the basins water balance. Impacts of the new snow cover fraction and exposed and shaded albedo parameterizations were evident when validating against remotely sensed data. Sensitivity tests highlight the role of the different components of the snow scheme with the behavior conditioned by the climate and vegetation conditions of each site. Thus, a robust verification of a LSM model should include a variety of different (and independent) validation datasets.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (64)

  1. Anderson, E. A., 1976: A point energy and mass balance model of a snow cover. NOAA Tech. Rep. NWQ 19, 150 pp.
  2. Armstrong, R. L., and E. Brun, Eds., 2008: Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling. Cambridge University Press, 222 pp.
  3. Baker, D. G., R. H. Skaggs, and D. L. Ruschy, 1991: Snow depth required to mask the underlying surface. J. Appl. Meteor., 30, 387-392.
  4. Balsamo, G., P. Viterbo, A. Beljaars, B. Van den Hurk, A. K. Betts, and K. Scipal, 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrome- teor., 10, 623-643.
  5. --, E. Dutra, V. M. Stepanenko, P. Viterbo, P. M. A. Miranda, and D. V. Mironov, 2010: Deriving an effective lake depth from satellite lake surface temperature data: A feasibility study with MODIS data. Boreal Environ. Res., 15, 178-190.
  6. Be ´lair, S., R. Brown, J. Mailhot, B. Bilodeau, and L. P. Crevier, 2003: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. J. Hydrometeor., 4, 371-386.
  7. Boone, A., and P. Etchevers, 2001: An intercomparison of three snow schemes of varying complexity coupled to the same land surface model: Local-scale evaluation at an alpine site. J. Hy- drometeor., 2, 374-394.
  8. --, and Coauthors, 2004: The Rho ˆne-Aggregation Land Surface Scheme intercomparison project: An overview. J. Climate, 17, 187-208.
  9. Brown, R., and R. L. Armstrong, 2008: Snow-cover data: Measure- ment, products, and sources. Snow and Climate, R. L. Armstrong and E. Brun, Eds., Cambridge University Press, 181-216.
  10. Brun, E., E. Martin, V. Simon, C. Gendre, and C. Coleou, 1989: An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol., 35, 333-342.
  11. --, P. David, M. Sudul, and G. Brunot, 1992: A numerical-model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glaciol., 38, 13-22.
  12. Cohen, J., M. Barlow, P. J. Kushner, and K. Saito, 2007: Stratosphere- troposphere coupling and links with Eurasian land surface variability. J. Climate, 20, 5335-5343.
  13. Cook, B. I., G. B. Bonan, S. Levis, and H. E. Epstein, 2008: The thermoinsulation effect of snow cover within a climate model. Climate Dyn., 31, 107-124.
  14. Dirmeyer, P. A., A. J. Dolman, and N. Sato, 1999: The pilot phase of the Global Soil Wetness Project. Bull. Amer. Meteor. Soc., 80, 851-878.
  15. --, X. Gao, and T. Oki, 2002: The Second Global Soil Wetness Project Science and Implementation Plan. International GEWEX Project Office Publication 37, 75 pp.
  16. Douville, H., and J. F. Royer, 1996: Sensitivity of the Asian summer monsoon to an anomalous Eurasian snow cover within the Me ´te ´o-France GCM. Climate Dyn., 12, 449-466.
  17. --, --, and J. F. Mahfouf, 1995: A new snow parameterization for the Me ´te ´o-France Climate Model. 1. Validation in stand- alone experiments. Climate Dyn., 12, 21-35.
  18. --, F. Chauvin, S. Planton, J. F. Royer, D. Salas-Melia, and S. Tyteca, 2002: Sensitivity of the hydrological cycle to in- creasing amounts of greenhouse gases and aerosols. Climate Dyn., 20, 45-68.
  19. Drusch, M., D. Vasiljevic, and P. Viterbo, 2004: ECMWF's global snow analysis: Assessment and revision based on satellite observations. J. Appl. Meteor., 43, 1282-1294.
  20. Dutra, E., V. M. Stepanenko, G. Balsamo, P. Viterbo, P. M. A. Miranda, D. V. Mironov, and C. Scha ¨r, 2010: An offline study of the impact of lakes on the performance of the ECMWF surface scheme. Boreal Environ. Res., 15, 100-112.
  21. Essery, R., and Coauthors, 2009: SNOWMIP2: An evaluation of forest snow process simulations. Bull. Amer. Meteor. Soc., 90, 1120-1135.
  22. Fletcher, C. G., S. C. Hardiman, P. J. Kushner, and J. Cohen, 2009: The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J. Climate, 22, 1208-1222.
  23. Frei, A., R. Brown, J. A. Miller, and D. A. Robinson, 2005: Snow mass over North America: Observations and results from the second phase of the atmospheric model intercomparison project. J. Hydrometeor., 6, 681-695.
  24. Gao, X., P. A. Dirmeyer, and T. Oki, 2004: Update on the second global soil wetness project (GSWP-2). GEWEX News, Vol. 14, International GEWEX Project Office, Silver Spring, MD, 10 pp.
  25. Gong, G., J. Cohen, D. Entekhabi, and Y. Ge, 2007: Hemispheric- scale climate response to northern Eurasia land surface char- acteristics and snow anomalies. Global Planet. Change, 56, 359-370. AUGUST 2010 D U T R A E T A L .
  26. Grippa, M., L. Kergoat, T. Le Toan, N. M. Mognard, N. Delbart, J. L'Hermitte, and S. M. Vicente-Serrano, 2005: The impact of snow depth and snowmelt on the vegetation variability over central Siberia. Geophys. Res. Lett., 32, L21412, doi:10.1029/ 2005GL024286.
  27. Groisman, P. Ya., T. R. Karl, and R. W. Knight, 1994a: Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science, 263, 198-200.
  28. --, --, --, and G. L. Stenchikov, 1994b: Changes of snow cover, temperature, and radiative heat balance over the Northern Hemisphere. J. Climate, 7, 1633-1656.
  29. --, R. W. Knight, T. R. Karl, D. R. Easterling, B. M. Sun, and J. H. Lawrimore, 2004: Contemporary changes of the hydro- logical cycle over the contiguous United States: Trends de- rived from in situ observations. J. Hydrometeor., 5, 64-85.
  30. Helfrich, S. R., D. McNamara, B. H. Ramsay, T. Baldwin, and T. Kasheta, 2007: Enhancements to, and forthcoming develop- ments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol. Processes, 21, 1576-1586.
  31. Hirschi, M., S. I. Seneviratne, and C. Schar, 2006: Seasonal varia- tions in terrestrial water storage for major midlatitude river basins. J. Hydrometeor., 7, 39-60.
  32. Jordan, R., 1991: A one-dimensional temperature model for snow cover. CRREL Special Rep. 91-b, Cold Regions Research and Engineering Laboratory, 49 pp.
  33. Liu, X. D., and M. Yanai, 2002: Influence of Eurasian spring snow cover on Asian summer rainfall. Int. J. Climatol., 22, 1075- 1089.
  34. Loth, B., H. F. Graf, and J. M. Oberhuber, 1993: Snow cover model for global climate simulations. J. Geophys. Res., 98 (D6), 10 451-10 464.
  35. Lynch-Stieglitz, M., 1994: The development and validation of a sim- ple snow model for the GISS GCM. J. Climate, 7, 1842-1855.
  36. Molders, N., H. Luijting, and K. Sassen, 2008: Use of atmospheric radiation measurement program data from Barrow, Alaska, for evaluation and development of snow-albedo parameteri- zations. Meteor. Atmos. Phys., 99, 199-219.
  37. Moody, E. G., M. D. King, C. B. Schaaf, D. K. Hall, and S. Platnick, 2007: Northern Hemisphere five-year average (2000-2004) spectral albedos of surfaces in the presence of snow: Statistics computed from Terra MODIS land products. Remote Sens. Environ., 111, 337-345.
  38. Nijssen, B., and Coauthors, 2003: Simulation of high latitude hy- drological processes in the Torne-Kalix basin: PILPS Phase 2(e): 2: Comparison of model results with observations. Global Planet. Change, 38, 31-53.
  39. NOAA/NESDIS/OSDPD/SSD, cited 2006: IMS daily Northern Hemisphere snow and ice analysis at 4 km and 24 km resolu- tion. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/g02156.html.\]
  40. Pedersen, C. A., and J. G. Winther, 2005: Intercomparison and validation of snow albedo parameterization schemes in cli- mate models. Climate Dyn., 25, 351-362.
  41. Ramsay, B. H., 1998: The interactive multisensor snow and ice mapping system. Hydrol. Processes, 12, 1537-1546.
  42. Robock, A., M. Q. Mu, K. Vinnikov, and D. Robinson, 2003: Land surface conditions over Eurasia and Indian summer monsoon rainfall. J. Geophys. Res., 108, 4131, doi:10.1029/2002JD002286.
  43. Roesch, A., and E. Roeckner, 2006: Assessment of snow cover and surface albedo in the ECHAM5 general circulation model. J. Climate, 19, 3828-3843.
  44. Roma ´n, M. O., and Coauthors, 2009: The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sens. Environ., 113, 2476- 2498.
  45. Rutter, N., D. Cline, and L. Li, 2008: Evaluation of the NOHRSC snow model (NSM) in a one-dimensional mode. J. Hydro- meteor., 9, 695-711.
  46. --, and Coauthors, 2009: Evaluation of forest snow pro- cesses models (SnowMIP2). J. Geophys. Res., 114, D06111, doi:10.1029/2008JD011063.
  47. Salomon, J. G., C. B. Schaaf, A. H. Strahler, F. Gao, and Y. F. Jin, 2006: Validation of the MODIS bidirectional reflectance dis- tribution function and albedo retrievals using combined ob- servations from the Aqua and Terra platforms. IEEE Trans. Geosci. Remote Sens., 44, 1555-1565.
  48. Seneviratne, S. I., P. Viterbo, D. Luthi, and C. Schar, 2004: In- ferring changes in terrestrial water storage using ERA-40 re- analysis data: The Mississippi River basin. J. Climate, 17, 2039-2057.
  49. Sheffield, J., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS):
  50. Evaluation of model-simulated snow cover extent. J. Geo- phys. Res., 108, 8849, doi:10.1029/2002JD003274.
  51. Shuai, Y. M., C. B. Schaaf, A. H. Strahler, J. C. Liu, and Z. T. Jiao, 2008: Quality assessment of BRDF/albedo retrievals in MODIS operational system. Geophys. Res. Lett., 35, L05407, doi:10.1029/2007GL032568.
  52. Simmons, A. J., S. M. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis product from 1989 onwards. ECMWF Newsletter, Vol. 110, ECMWF, Reading, United Kingdom, 25-35.
  53. Slater, A. G., A. J. Pitman, and C. E. Desborough, 1998: The val- idation of a snow parameterization designed for use in general circulation models. Int. J. Climatol., 18, 595-617.
  54. Stroeve, J., J. E. Box, F. Gao, S. L. Liang, A. Nolin, and C. Schaaf, 2005: Accuracy assessment of the MODIS 16-day albedo product for snow: Comparisons with Greenland in situ mea- surements. Remote Sens. Environ., 94, 46-60.
  55. Sun, S. F., J. M. Jin, and Y. K. Xue, 1999: A simple snow-atmosphere- soil transfer model. J. Geophys. Res., 104, 19 587-19 597.
  56. Tribbeck, M. J., R. J. Gurney, and E. M. Morris, 2006: The radiative effect of a fir canopy on a snowpack. J. Hydrometeor., 7, 880-895.
  57. Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 2961-3012.
  58. van den Hurk, B., and P. Viterbo, 2003: The Torne-Kalix PILPS 2(e) experiment as a test bed for modifications to the ECMWF land surface scheme. Global Planet. Change, 38, 165-173.
  59. --, --, A. C. M. Beljaars, and A. K. Betts, 2000: Offline vali- dation of the ERA-40 surface scheme. ECMWF Tech. Memo. 295, 43 pp.
  60. Verseghy, D. L., 1991: Class-A Canadian Land Surface Scheme for GCMS. 1. Soil model. Int. J. Climatol., 11, 111-133.
  61. Viterbo, P., and A. C. M. Beljaars, 1995: An improved land-surface parameterization scheme in the ECMWF model and its vali- dation. J. Climate, 8, 2716-2748.
  62. --, and A. K. Betts, 1999: Impact on ECMWF forecasts of changes to the albedo of the boreal forests in the presence of snow. J. Geophys. Res., 104, 27 803-27 810.
  63. --, A. Beljaars, J. F. Mahfouf, and J. Teixeira, 1999: The repre- sentation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125, 2401-2426.
  64. Yang, Z. L., R. E. Dickinson, A. Robock, and K. Y. Vinnikov, 1997: Validation of the snow submodel of the biosphere-atmosphere transfer scheme with Russian snow cover and meteorological observational data. J. Climate, 10, 353-373.