STM manipulation of molecular moulds on metal surfaces (original) (raw)

Abstract

Molecular Landers are a class of compounds containing an aromatic board as well as bulky side groups which upon adsorption of the molecule on a surface may lift the molecular board away from the substrate. Different molecular Landers have extensively been studied as model systems for nanomachines and the formation of molecular wires, as well as for their function as “molecular moulds”, i.e., acting as templates by accommodating metal atoms underneath their aromatic board. Here, we investigate the adsorption of a novel Lander molecule 1,4-bis(4-(2,4-diaminotriazine)phenyl)-2,3,5,6-tetrakis(4-tert-butylphenyl)benzene (DAT, C64H68N10) on Cu(110) and Au(111) surfaces under ultrahigh vacuum (UHV) conditions. By means of scanning tunneling microscopy (STM) imaging and manipulation, we characterize the morphology and binding geometries of DAT molecules at terraces and step edges. On the Cu(110) surface, various contact configurations of individual DAT Landers were formed at the step edges in a controlled manner, steered by STM manipulation, including lateral translation, rotation, and pushing molecules to an upper terrace. The diffusion barrier of single DAT molecules on Au(111) is considerably smaller than on Cu(110). The DAT Lander is specially designed with diamino-triazine side groups making it suitable for future studies of molecular self-assembly by hydrogen-bonding interactions. The results presented here are an important guide to the choice of substrate for future studies using this compound.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (30)

  1. Joachim, C.; Gimzewski, J. K.; Aviram A. Electronics using hybrid-molecular and mono-molecular devices. Nature 2000, 408, 541 548.
  2. Browne, W. R.; Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 2006, 1, 25 35.
  3. Gourdon, A. Synthesis of "Molecular Landers". Eur. J. Org. Chem. 1998, 1998, 2797 2801.
  4. Magoga, M.; Joachim, C. Conductance and transparence of long molecular wires. Phys. Rev. B 1997, 56, 4722 4729.
  5. Gross, L.; Rieder, K. -H.; Moresco, F.; Stojkovic, S. M.; Gourdon, A.; Joachim, C. Trapping and moving metal atoms with a six-leg molecule. Nat. Mater. 2005, 4, 892 895.
  6. Schunack, M.; Rosei, F.; Naitoh, Y.; Jiang, P.; Gourdon, A.; Laegsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Adsorption behavior of Lander molecules on Cu(110) studied by scanning tunneling microscopy. J. Chem. Phys. 2002, 117, 6259 6265.
  7. Savio, L.; Gross, L.; Rieder, K. -H.; Gourdon, A.; Joachim, C.; Moresco, F. Interaction of a long molecular wire with a nanostructured surface: Violet Landers on Cu(211). Chem. Phys. Lett. 2006, 428, 331 337.
  8. Grill, L.; Rieder, K. -H.; Moresco, F.; Rapenne, G.; Nano Res (2009) 2: 254 259
  9. Stojokovic, S.; Bouju, X.; Joachim, C. Rolling a single molecular wheel at the atomic scale. Nat. Nanotechnol. 2007, 2, 95 98.
  10. Shirai, Y.; Osgood, A. J.; Zhao, Y. M.; Yao, Y. X.; Saudan, L.; Yang, H. B.; Chiu, Y. -H.; Alemany, L. B.; Sasaki, T.; Morin, J. -F.; Guerrero, J. M.; Kelly, K. F.; Tour, J. M. Surface-rolling molecules. J. Am. Chem. Soc. 2006, 128, 4854 4864.
  11. Sasaki, T.; Guerrero, J. M.; Leonard, A. D.; Tour, J. M. Nanotrains and self-assembled two-dimensional arrays built from carboranes linked by hydrogen bonding of dipyridones. Nano Res. 2008, 1, 412 419.
  12. Rosei, F.; Schunack, M.; Jiang, P.; Gourdon, A.; Laegsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Organic molecules acting as templates on metal surfaces. Science 2002, 296, 328 331.
  13. Otero, R.; Rosei, F.; Besenbacher, F. Scanning tunneling microscopy manipulation of complex organic molecules on solid surfaces. Annu. Rev. Phys. Chem. 2006, 57, 497 525.
  14. Grill, L.; Moresco, F. Contacting single molecules to metallic electrodes by scanning tunneling microscope manipulation: Model systems for molecular electronics. J. Phys.: Condens. Matter 2006, 18, S1887 1908.
  15. Grill, L.; Moresco, F.; Jiang, P.; Joachim, C.; Gourdon, A.; Rieder, K. -H. Controlled manipulation of a single molecular wire along a copper atomic nanostructure. Phys. Rev. B 2004, 69, 035416.
  16. Moresco, F.; Meyer, G.; Rieder, K. -H.; Tang, H.; Gourdon, A.; Joachim, C. Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: A route to molecular switching. Phys. Rev. Lett. 2001, 86, 672 675.
  17. Otero, R. ; Naitoh, Y. ; Rosei, F. ; Jiang, P. ; Thostrup, P. ; Gourdon, A. ; Laegsgaard, E. ; Stensgaard, I.; Joachim, C.; Besenbacher, F. One-dimensional assembly and selective orientation of Lander molecules on a O Cu template. Angew. Chem. Int. Ed. 2004, 43, 2092 2095.
  18. Grill, L.; Rieder, K. -H.; Moresco, F.; Stojkovic, S.; Gourdon, A.; Joachim, C. Controlling the electronic interaction between a molecular wire and its atomic scale contacting pad. Nano Lett. 2005, 5, 859 863.
  19. Alemani, M.; Gross, L.; Moresco, F.; Rieder, K. -H.; Wang, C.; Bouju, X.; Gourdon, A.; Joachim, C. Recording the intramolecular deformation of a 4-legs molecule during its STM manipulation on a Cu(211) surface. Chem. Phys. Lett. 2005, 402, 180 185.
  20. Otero, R.; Rosei, F.; Naitoh, Y.; Jiang, P.; Thostrup, P.; Gourdon, A.; Laegsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Nanostructuring Cu surfaces using custom-designed molecular molds. Nano Lett. 2004, 4, 75 78.
  21. Otero, R.; Hümmelink, F.; Sato, F.; Legoas, S. B.; Thostrup, P.; Laegsgaard, E.; Stensgaard, I.; Galvão, D. S.; Besenbacher, F. Lock-and-key effect in the surface diffusion of large organic molecules probed by STM. Nat. Mater. 2004, 3, 779 782.
  22. Kuntze, J.; Ge, X.; Berndt, R. Chiral structures of Lander molecules on Cu(100). Nanotechnology 2004, 15, S337 340.
  23. Xu, W.; Dong, M.; Gersen, H.; Rauls, E.; Vazquez- Campos, S.; Crego-Calama, M.; Reinhoudt, D. N.; Stensgaard, I.; Laegsgaard, E.; Stensgaard, I.; Linderoth, T. R.; Besenbacher, F. Cyanuric acid and melamine on Au(111): Structure and energetics of hydrogen-bonded networks. Small 2007, 3, 854 858.
  24. Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, 1029 1031.
  25. De Feyter, S.; Miura, A.; Yao, S.; Chen, Z.; Wurthner, F.; Jonkheijm, P.; Schenning, A. P. H. J.; Meijer, E. W.; De Schryver, F. C. Two-dimensional self-assembly into multicomponent hydrogen-bonded nanostructures. Nano Lett. 2005, 5, 77 81.
  26. Ruiz-Oses, M.; Gonzalez-Lakunza, N.; Silanes, I.; Gourdon, A.; Arnau, A.; Ortega, J. E. Self-assembly of heterogeneous supramolecular structures with uniaxial anisotropy. J. Phys. Chem. B 2006, 110, 25573 25577.
  27. Laegsgaard, E.; Osterlund, L.; Thostrup, P.; Rasmussen, P. B.; Stensgaard, I.; Besenbacher, F. A high-pressure scanning tunneling microscope. Rev. Sci. Instrum. 2001, 72, 3537 3542.
  28. Sautet, P.; Joachim, C. Calculation of the benzene on rhodium STM images. Chem. Phys. Lett. 1991, 185, 23 30.
  29. Allinger, N. L.; Chen, K.; Lii, J. -H. An improved force field (MM4) for saturated hydrocarbons. J. Comput. Chem. 1996, 17, 642 668.
  30. Zambelli, T. ; Goudeau, S. ; Lagoute, J. ; Gourdon, A.; Bouju, X. ; Gauthier, S. ; Molecular self-assembly of jointed molecules on a metallic substrate: From single molecule to monolayer. Chem. Phys. Chem. 2006, 7, 1917 1920.