BSA coated gold nanoparticles exhibit size dependent interaction with lung cancer (A549) cells (original) (raw)
Related papers
Particle and Fibre Toxicology, 2013
Background: Reliable in vitro toxicity testing is needed prior to the commencement of in vivo testing necessary for hazard identification and risk assessment of nanoparticles. In this study, the cytotoxicity and uptake of 14 nm and 20 nm citrate stabilised gold nanoparticles (AuNPs) in the bronchial epithelial cell line BEAS-2B, the Chinese hamster ovary cell line CHO, and the human embryonic kidney cell line HEK 293 were investigated.
Solvent assisted size effect on AuNPs and significant inhibition on K562 cells
rsc advances, 2019
Herein, the synthesis and characterization of ideal size ($10 and 40 nm, in diameter) AuNPs (gold nanoparticles) were reported. Two different organic solvents such as DMF (dimethyl formamide) and NMPL (N-methyl-2-pyrrolidone) were used to synthesize AuNPs along with agents reducing agents such as NaBH 4 (sodium borohydrate) and Na 3 C 6 H 5 O 7 (sodium citrate). The combination of [(HAuCl 4)-(DMF)-(NaBH 4)] gives AuNPs with an avg. size of 10.2 nm. Similarly, the combination of [(HAuCl 4)-(NMPL)-(Na 3 C 6 H 5 O 7)] gives AuNPs with an avg. size of 40.4 nm. The morphology of these nanoscale AuNPs has been characterized through TEM and HRTEM imaging followed by SAED for lattice parameters such as d-spacing value (2.6 ˚ A/0.26 nm) of crystalline metal (Au) nanoparticles. Further, these unique and ideal nanoscale AuNPs were used to evaluate the potential working efficacy by using in vitro cell based studies on K562 (leukaemia) blood cancer cells. From the MTT assay results around 88% cell inhibition was measured for $10 nm sized AuNPs. The treated cells were stained with different fluorescent dyes such as FITC, DAPI, Rho-6G and their ruptured morphology has been reported in the respective sections. These types of ideal sized metal (Au) nanoparticles are recommended for various theranostics such as to cure breast, colon, lung and liver cancers.
ACS omega, 2019
The drive behind the growing interest in understanding gold nanoparticle (AuNP) cytotoxicity originates from the promise of AuNPs for diverse biological applications across the fields of drug delivery, biosensing, biological imaging, gene therapy, and photothermal therapy. Although we continue to investigate the novel biomedical applications of AuNPs, progress is currently stalled at the periphery of understanding the forces that govern critical nano−bio interactions. In this work, we systematically probe the size, shape, and surface capping effects of nanogold by designing a set of eight unique AuNPs. This allowed us to undertake a systematic study involving each of these parameters in the context of their influence on the cytotoxicity and cellular uptake by human prostate cancer cells (PC3) as a model biological system. While studying the influence of these parameters, our study also investigated the influence of serum proteins in forming different levels of biological corona on AuNPs, thereby further influencing the nano−bio interface. As such, increased cellular uptake (by nanoparticle number) was observed with decreasing the AuNP size and increased uptake levels were observed for gold nanospheres (of the same size) stabilized with amino acids compared to citrate or cetyltrimethylammonium bromide (CTAB). Spherical particles were found to be taken up in greater numbers compared to the shapes with broad flat faces. When measuring cytotoxicity, CTAB-stabilized rod-and cube-shaped particles were well tolerated by the cells, whereas toxicity was observed in the case of CTAB-stabilized spherical and prismatic particles. These effects, however, are underpinned by different mechanisms. Further, it is demonstrated that it is possible for different chemical stabilizers to elicit varied cytotoxic effects. Although we find the limited role of serum proteins in mediating toxicity, they do play a critical role in influencing the cellular uptake of AuNPs, with lower levels of uptake generally observed in the presence of serum. Our findings offer a useful step in the direction of predicting the biological interactions of AuNPs based on specific parameters of the AuNP design.
Scientific Reports, 2022
Understanding the nanoparticle-cell interactions in physiological media is vital in determining the biological fate of the nanoparticles (NPs). These interactions depend on the physicochemical properties of the NPs and their colloidal behavior in cell culture media (CCM). Furthermore, the impact of the bioconjugates made by nanoparticle with proteins from CCM on the mechanical properties of cells upon interaction is unknown. Here, we analyzed the time dependent stability of gold nanoparticles (AuNPs) functionalized with citrate, dextran-10, dextrin and chitosan polymers in protein poor-and protein rich CCM. Further, we implemented the high-throughput technology real-time deformability cytometry (RT-DC) to investigate the impact of AuNP-bioconjugates on the cell mechanics of HL60 suspension cells. We found that dextrin-AuNPs form stable bioconjugates in both CCM and have a little impact on cell mechanics, ROS production and cell viability. In contrast, positively charged chitosan-AuNPs were observed to form spherical and non-spherical aggregated conjugates in both CCM and to induce increased cytotoxicity. Citrate-and dextran-10-AuNPs formed spherical and non-spherical aggregated conjugates in protein rich-and protein poor CCM and induced at short incubation times cell stiffening. We anticipate based on our results that dextrin-AuNPs can be used for therapeutic purposes as they show lower cytotoxicity and insignificant changes in cell physiology. Over the last few years, nanotechnologies have undergone an exponential growth in various fields such as nanomedicine, electronics, energy and environment due to the unique chemical and physical properties of the nanomaterials 1-3. Metal nanoparticles such as gold nanoparticles (AuNPs) have attracted an increasing attention due to their wide applications e.g., in diagnostics, as drug carriers, for imaging and therapy 4-8. This is due to their specific physico-chemical properties such as small size, greater surface area-to-volume ratio, high reactivity and surface plasmon resonance (SPR) which depend on particle size, shape and dielectric constant of the medium 9-14. In order to design AuNPs as drug carriers or therapeutic agents it is necessary to investigate the interaction of NPs with cells, including their biological and biophysical implications. When NPs are exposed to biological systems, they rapidly adsorb biomolecules onto their surface, potentially changing the equilibrium and leading to formation of various arrangements of NP-biomolecule complexes. The formation of NP-biomolecule complexes can vary with time and is an important aspect of assessing the impact
2020
Gold nanoparticles (GNPs) have properties that can be applied to the diagnosis and therapies of cancer, improving both the control and efficiency of treatment. Therefore, the aim of this study was to synthesize and characterize GNPs of different sizes and evaluate their cytotoxicity in human erythrocytes, murine fibroblasts (NIH3T3), human cervix carcinoma cells (HeLa), and melanoma cells (B16F10). GNPs were successfully synthesized by the Turkevich method, to obtain citrate-capped GNPs with different sizes (10, 20, and 30 nm). Transmission electron microscopy images showed GNPs with spherical/near-spherical morphology and their sizes were confirmed by ultraviolet-visible spectroscopy analysis. FTIR and XRD spectra confirmed that the citrate-capped GNPs have been formed with appearance of peakscharacteristic. Cytotoxicity studies showed that the 20 nm GNPs exerted lower cytotoxic effects on noncancerous cells than other GNPs and presented a higher cytotoxic effect on the HeLa cells. In contrast, when GNPs were incubated with B16F10 cells, the 10 nm GNPs were more cytotoxic than the 20 and 30 nm GNPs. HeLa cells were more sensitive (IC 50 2.1 μg/mL) to treatment with GNPs than B16F10 cells (IC 50 > 70 μg/mL). Therefore, this study demonstrated that the physicochemical properties, concentration, and cell type used were limiting factors for the cytotoxic effect of GNPs. Lastly, these results confirm the need for future studies to evaluate cellular uptake, death mechanism, and other biochemical parameters required to develop novel cancer therapies.