Statistical Analysis on Result Prediction in Chess (original) (raw)

2018, International Journal of Information Engineering and Electronic Business

In this paper, authors have proposed a technique which uses the existing database of chess games and machine learning algorithms to predict the game results. Authors have also developed various relationships among different combinations of attributes like half-moves, move sequence, chess engine evaluated score, opening sequence and the game result. The database of 10,000 actual chess games, imported and processed using Shane’s Chess Information Database (SCID), is annotated with evaluation score for each halfmove using Stockfish chess engine running constantly on depth 17. This provided us with a total of 8,40,289 board evaluations. The idea is to make the Multi-Variate Linear Regression algorithm learn from these evaluation scores for same sequence of opening moves and game outcome, then using it to calculate the winning score of a side for each possible move and thus suggesting the move with highest score. The output is also tested with including move details. Game attributes are ...

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact