Stimulation of a Restricted Region in the Midline Cerebellar White Matter Evokes Coordinated Quadrupedal Locomotion in the Decerebrate Cat (original) (raw)

Cerebellarā€induced Locomotion: Reticulospinal Control of Spinal Rhythm Generating Mechanism in Catsa

Annals of the New York Academy of Sciences, 1998

In a decerebrate cat (locomotor preparation), stimulation of a restricted region along the midline cerebellar white matter has been found to evoke generalized augmentation of postural muscle tone on a stationary surface (Asanome et al. 1998. Neurosci. Res. 30: 257-269) and "controlled" locomotion on the surface of a moving treadmill. Characteristics of cerebellar-evoked locomotion were similar to those of mesencephalic locomotor region-evoked "controlled" locomotion on the same animal. Microinjection of a neural tracer (CTb-HRP) into the lesioned stimulus site of the cerebellar white matter resulted in both retrograde labeling of cells in the fastigial nuclei, bilaterally, and anterograde labeling of fibers descending to the brain stem. These results indicated that the effective cerebellar stimulus site (cerebellar locomotor region) corresponded to the midline region of the hook bundle of Russell (Rasmussen, A. T., 1933. J. Comp. Neurol. 57: 165-197), through which crossed fastigioreticular, fastigiovestibular, and fastigiospinal fibers pass. In this study, contribution of reticulospinal systems to the control of cerebellar-evoked locomotion was extensively studied. By stimulating the cerebellar locomotor region and the MLR in the same animal, a majority of antidromically identified pontomedullary reticulospinal cells were synaptically activated. The results of the present study demonstrated that fastigial cells with crossed fastigioreticular fibers and reticulospinal fibers play a crucial role in the control of posture and locomotion in the locomotor preparation.

Functional relation between corticonuclear input and movements evoked on microstimulation in cerebellar nucleus interpositus anterior in the cat

Experimental Brain Research, 1995

The functional relation between receptive fields of climbing fibres projecting to the C1, C3 and Y zones and forelimb movements controlled by nucleus interpositus anterior via the rubrospinal tract were studied in cats decerebrated at the pre-collicular level. Microelectrode tracks were made through the caudal half of nucleus interpositus anterior. This part of the nucleus receives its cerebellar cortical projection from the forelimb areas of these three sagittal zones. The C3 zone has been demonstrated to consist of smaller functional units called microzones. Natural stimulation of the forelimb skin evoked positive field potentials in the nucleus. These potentials have previously been shown to be generated by climbing fibre-activated Purkinje cells and were mapped at each nuclear site, to establish the climbing fibre receptive fields of the afferent microzones. The forelimb movement evoked by microstimulation at the same site was then studied. The movements usually involved more than one limb segment. Shoulder retraction and elbow flexion were frequently evoked, whereas elbow extension was rare and shoulder protraction never observed. In total, movements at the shoulder and/or elbow occurred for 96% of the interpositus sites. At the wrist, flexion and extension movements caused by muscles with radial, central or ulnar insertions on the paw were all relatively common. Pure supination and pronation movements were also observed. Movements of the digits consisted mainly of dorsal flexion of central or ulnar digits. A comparison of climbing fibre receptive fields and associated movements for a total of 110 nuclear sites indicated a general specificity of the input-output relationship of this cerebellar control system. Several findings suggested that the movement evoked from a particular site would act to withdraw the area of the skin corresponding to the climbing fibre receptive field of the afferent microzones. For example, sites with receptive fields on the dorsum of the paw were frequently associated with palmar flexion c.-E Ekerot (~)-H. J

Climbing fiber responses of cerebellar Purkinje cells to passive movement of the cat forepaw

Brain Research, 1976

The activity of cerebellar Purkinje cells during controlled and passive movement of the forepaw was studied in the cat. Burst responses characteristic of activation by climbing fibers were observed in Purkinje cells in lobules Vb and Vc of the cerebellar vermis and paravermis. The climbing fiber responses followed the onset of a movement with a latency ranging from 20 to 60 msec depending upon movement type and amplitude. Responsive Purkinje cells were localized in a well defined parasagittal strip very near the paravermal vein in lobules Vb and Vc. Cells within the responsive strip responded with identical response probabilities and latencies for any particular type of movement presentation. Responses were independent of starting paw position and direction of movement. Climbing fiber responses could be evoked by extremely small movements with most cells responding to displacements of 50/~m. The latencies and probabilities for climbing fiber responses were inversely related to movement amplitude with latencies as long as 80 msec for very small displacements.

Cerebellar cortical activity in the cat anterior lobe during hindlimb stepping

Experimental Brain Research, 2008

We recorded from over 250 single cortical neurons throughout the medial anterior lobe of the cat cerebellum during passive movements of the ipsilateral hindlimb resembling stepping on a moving treadmill. We applied three different quantitative analysis techniques to determine the extent of neuronal modulation that could be accounted for by the stepping movements. The analyses all indicated that up to half the recorded neurons in all five lobules responded to these passive hindlimb movements. We reconstructed the locations of the recorded neurons on a 2-D map of the cerebellar cortex in order to determine the spatial distribution of responsive cells. Cells that were located in the classical hindlimb projection areas of the anterior lobe (in lobules 2 and 3) were generally most responsive to the limb movement with activity patterns that generally had a linear relationship to hindlimb kinematics. Cells in lobules 4 and 5, considered as classical forelimb areas of the cerebellum, were also responsive. Although these cells tended to have noisier firing patterns, many were found to be modulated nevertheless by the hindlimb movements. We also found a clear demarcation between zones b and c, with a higher fraction of responsive cells in all lobules located in zone b.

Widespread State-Dependent Shifts in Cerebellar Activity in Locomoting Mice

PLoS ONE, 2012

Excitatory drive enters the cerebellum via mossy fibers, which activate granule cells, and climbing fibers, which activate Purkinje cell dendrites. Until now, the coordinated regulation of these pathways has gone unmonitored in spatially resolved neuronal ensembles, especially in awake animals. We imaged cerebellar activity using functional two-photon microscopy and extracellular recording in awake mice locomoting on an air-cushioned spherical treadmill. We recorded from putative granule cells, molecular layer interneurons, and Purkinje cell dendrites in zone A of lobule IV/V, representing sensation and movement from trunk and limbs. Locomotion was associated with widespread increased activity in granule cells and interneurons, consistent with an increase in mossy fiber drive. At the same time, dendrites of different Purkinje cells showed increased co-activation, reflecting increased synchrony of climbing fiber activity. In resting animals, aversive stimuli triggered increased activity in granule cells and interneurons, as well as increased Purkinje cell co-activation that was strongest for neighboring dendrites and decreased smoothly as a function of mediolateral distance. In contrast with anesthetized recordings, no 1-10 Hz oscillations in climbing fiber activity were evident. Once locomotion began, responses to external stimuli in all three cell types were strongly suppressed. Thus climbing and mossy fiber representations can shift together within a fraction of a second, reflecting in turn either movement-associated activity or external stimuli.

Changes in Excitability of Ascending and Descending Inputs to Cerebellar Climbing Fibers during Locomotion

Journal of Neuroscience, 2004

The inferior olive climbing fiber projection plays a central role in all major theories of cerebellar function. Therefore, mechanisms that control the ability of climbing fibers to forward information to the cerebellum are of considerable interest. We examined changes in transmission in cerebro-olivocerebellar pathways (COCPs) and spino-olivocerebellar pathways (SOCPs) during locomotion in awake cats (n Ļ­ 4) using low-intensity electrical stimuli delivered to the contralateral cerebral peduncle or the ipsilateral superficial radial nerve to set up volleys in COCPs and SOCPs, respectively. The responses were recorded as evoked extracellular climbing fiber field potentials within the C1 or C3 zones in the paravermal cerebellar cortex (lobule Va-Vc). At most C1 and C3 zone sites, the largest COCP responses occurred during the stance phase, and the smallest responses occurred during the swing phase of the ipsilateral forelimb step cycle. In marked contrast, SOCP responses recorded at the same sites were usually largest during the swing phase and smallest during the stance phase. Because substantial climbing fiber responses could be evoked in all phases of the step cycle, the results imply that olivary neurons remain excitable throughout, and that the differences between SOCPs and COCPs in their pattern of step-related modulation are unlikely to have arisen solely through inhibition at the level of the inferior olive (e.g., by activity in the inhibitory cerebellar nucleo-olivary pathway). The different patterns of modulation also suggest that climbing fiber signals conveyed by COCPs and SOCPs are likely to affect information processing within the cerebellar cortical C1 and C3 zones at different times during locomotion.

Locomotion-related variations in excitability of spino-olivocerebellar paths to cat cerebellar cortical c2 zone

The Journal of physiology, 1990

1. Cutaneous nerve stimulation was used to study the excitability of the spino-olivocerebellar pathways (SOCPs) to the c2 zone of the paravermal cerebellar cortex in the cat. Non-noxious single-shock stimulation of the right and left superficial radial (SR) nerves via implanted cuff electrodes was used to evoke field potentials in the cerebellar cortex via the SOCPs. 2. The evoked potentials were recorded extracellularly either in lobule V of the anterior lobe (three cats) or within the paramedian lobule of the posterior lobe (one cat) with glass-coated tungsten microelectrodes. Measurement of the amplitudes of the responses was used to monitor transmission in the SOCPs in cats at rest and during walking. 3. A total of eleven c2 recording sites were investigated in detail. At seven of these sites, responses were recorded both during locomotion and at rest. For all seven sites responses during locomotion were smaller, more variable in amplitude and less securely evoked (average reduc...

Cerebellar control of gait and interlimb coordination

Brain Structure and Function, 2014

Synaptic and intrinsic processing in Purkinje cells, interneurons and granule cells of the cerebellar cortex have been shown to underlie various relatively simple, single-joint, reflex types of motor learning, including eyeblink conditioning and adaptation of the vestibulo-ocular reflex. However, to what extent these processes contribute to more complex, multi-joint motor behaviors, such as locomotion performance and adaptation during obstacle crossing, is not well understood. Here, we investigated these functions using the Erasmus Ladder in cell-specific mouse mutant lines that suffer from impaired Purkinje cell output (Pcd), Purkinje cell potentiation (L7-Pp2b), molecular layer interneuron output (L7-Dc2), and granule cell output (a6-Cacna1a). We found that locomotion performance was severely impaired with small steps and long step times in Pcd and L7-Pp2b mice, whereas it was mildly altered in L7-Dc2 and not significantly affected in a6-Cacna1a mice. Locomotion adaptation triggered by pairing obstacle appearances with preceding tones at fixed time intervals was impaired in all four mouse lines, in that they all showed inaccurate and inconsistent adaptive walking patterns. Furthermore, all mutants exhibited altered fronthind and left-right interlimb coordination during both performance and adaptation, and inconsistent walking stepping patterns while crossing obstacles. Instead, motivation and avoidance behavior were not compromised in any of the mutants during the Erasmus Ladder task. Our findings indicate that cell type-specific abnormalities in cerebellar microcircuitry can translate into pronounced impairments in locomotion performance and adaptation as well as interlimb coordination, highlighting the general role of the cerebellar cortex in spatiotemporal control of complex multi-joint movements.

Cerebellar contribution to feedforward control of locomotion

Frontiers in human neuroscience, 2014

The cerebellum is an important contributor to feedforward control mechanisms of the central nervous system, and sequencing-the process that allows spatial and temporal relationships between events to be recognized-has been implicated as the fundamental cerebellar mode of operation. By adopting such a mode and because cerebellar activity patterns are sensitive to a variety of sensorimotor-related tasks, the cerebellum is believed to support motor and cognitive functions that are encoded in the frontal and parietal lobes of the cerebral cortex. In this model, the cerebellum is hypothesized to make predictions about the consequences of a motor or cognitive command that originates from the cortex to prepare the entire system to cope with ongoing changes. In this framework, cerebellar predictive mechanisms for locomotion are addressed, focusing on sensorial and motoric sequencing. The hypothesis that sequence recognition is the mechanism by which the cerebellum functions in gait control ...