Peptide Assembly on the Membrane Determines the HIV-1 Inhibitory Activity of Dual-Targeting Fusion Inhibitor Peptides (original) (raw)
Related papers
Journal of Virology, 2006
Soluble peptides derived from the C-terminal heptad repeat domain of human immunodeficiency virus type 1 (HIV-1) gp41 are potent inhibitors of HIV-1 entry and gp41-induced fusion. Target membrane-anchored variants of these peptides have been shown to retain inhibitory activity. Both soluble and membrane-anchored C peptides (MACs) are thought to block fusion by binding to the N-terminal coiled coil domain of gp41 and preventing formation of the final six-helix bundle structure. However, interactions of target MACs with gp41 must be restricted to a subset of trimers that have their hydrophobic fusion peptides inserted into the target membrane. This unique feature of MACs was used to identify the intermediate step of fusion at which gp41 engaged the target membrane. Fusion between HIV envelope-expressing effector cells and target cells was measured by fluorescence microscopy. Expression of MACs in target cells led to less than twofold reduction in the extent of fusion. However, when re...
Analysis of HIV-1 fusion peptide inhibition by synthetic peptides from E1 protein of GB virus C
Journal of Colloid and Interface Science, 2011
The aim of this study was to identify proteins that could inhibit the activity of the peptide sequence representing the N-terminal of the surface protein gp41 of HIV, corresponding to the fusion peptide of the virus (HIV-1 FP). To do this we synthesized and studied 58 peptides corresponding to the envelope protein E1 of the hepatitis G virus (GBV-C).
Biochemistry, 1996
Two synthetic peptides corresponding to sequences in HIV-1 LAI gp41, T21 (aa 558-595) and T20 (aa 643-678), are strong inhibitors of HIV-1 viral fusion, having EC 50 values of 1 µg/mL and 1 ng/mL, respectively. Previous work suggested that T21 forms a coiled-coil structure in PBS solution, while T20 is primarily nonhelical, and that the inhibitory action of these peptides occurs after the interaction between the viral gp120 protein and the cellular CD4 receptor [
Biochemistry, 2006
The amino-terminal region within the HIV-1 gp41 aromatic-rich pretransmembrane domain is an amphipathic-at-interface sequence (AIS). AIS is highly conserved between different viral strains and isolates and recognized by the broadly neutralizing 2F5 antibody. The atomic structure of the native Fab2F5-bound AIS appears to involve a nonhelical extended region and a beta-turn structure. We previously described how an immunogenic complex forms, based on the stereospecific interactions between AIS and the gp41 amino-terminal fusion peptide (FP). Here, we have analyzed the structure generated by these interactions using synthetic hybrids containing AIS and FP sequences connected through flexible tethers. The monoclonal 2F5 antibody recognized FP-AIS hybrid sequences with an apparently higher affinity than the linear AIS. Indeed, these hybrids exhibited a weaker capacity to destabilize membranes than FP alone. A combined structural analysis, including circular dichroism, infrared spectroscopy, and two-dimensional infrared correlation spectroscopy, revealed the existence of specific conformations in FP-AIS hybrids, predominantly involving beta-turns. Thermal denaturation studies indicated that FP stabilizes the nonhelical folded AIS structure. We propose that the assembly of the FP-AIS complex may act as a kinetic trap in halting the capacity of FP to promote fusion.
Journal of Biological Chemistry, 1997
The fusion domain of human immunodeficiency virus (HIV-1) envelope glycoprotein (gp120-gp41) is a conserved hydrophobic region located at the N terminus of the transmembrane glycoprotein (gp41). A V2E mutant has been shown to dominantly interfere with wild-type envelope-mediated syncytium formation and virus infectivity. To understand this phenomenon, a 33-residue peptide (wild type, WT) identical to the N-terminal segment of gp41 and its V2E mutant were synthesized, fluorescently labeled, and characterized. Both peptides inhibited HIV-1 envelope-mediated cell-cell fusion and had similar ␣-helical content in membrane mimetic environments. Studies with fluorescently labeled peptide analogues revealed that both peptides have high affinity for phospholipid membranes, are susceptible to digestion by proteinase-K in their membrane-bound state, and tend to self-and coassemble in the membranes. In SDS-polyacrylamide gel electrophoresis the WT peptide formed dimers as well as higher order oligomers, whereas the V2E mutant only formed dimers. The WT, but not the V2E mutant, induced liposome aggregation, destabilization, and fusion. Moreover, the V2E mutant inhibited vesicle fusion induced by the WT peptide, probably by forming inactive heteroaggregates. These data form the basis for an explanation of the mechanism by which the gp41 V2E mutant inhibits HIV-1 infectivity in cells when co-expressed with WT gp41.
A Rationally Engineered Anti-HIV Peptide Fusion Inhibitor with Greatly Reduced Immunogenicity
Antimicrobial Agents and Chemotherapy, 2013
http://aac.asm.org/content/57/2/679 Updated information and services can be found at: These include: SUPPLEMENTAL MATERIAL Supplemental material REFERENCES http://aac.asm.org/content/57/2/679#ref-list-1 at: This article cites 54 articles, 26 of which can be accessed free CONTENT ALERTS more» articles cite this article), Receive: RSS Feeds, eTOCs, free email alerts (when new http://journals.asm.org/site/misc/reprints.xhtml Information about commercial reprint orders:
Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody
Science, 2016
An antibody to block viral fusion A small fraction of HIV-1–infected individuals develop broad and potent antibodies that bind the HIV-1 envelope protein (Env). These antibodies recognize a limited set of conserved epitopes on Env, such as Env's host receptor-binding site. Kong et al. now report a neutralizing antibody isolated from an HIV-1–infected individual that binds to the fusion peptide of Env. This is unexpected because viruses often try to mask such key components of their cell entry machinery from antibody attack. Crystal structures of the antibody bound to the fusion peptide and to Env itself define the epitope, provide insight into the specific mechanism of antibody binding, and may inform HIV-1 vaccine design. Science , this issue p. 828
Virology, 2010
Envelope glycoprotein gp41 α-helical heptad repeat C34 fusion inhibitor CRF01_AE Subtypes Two α-helical heptad repeats, N-HR and C-HR, located in the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41, play an important role in membrane fusion by forming a 6-helix bundle. C34, a peptide mimicking C-HR, inhibits the formation of the 6-helix bundle; thus, it has potential as a novel antiretroviral compound. In order to improve the inhibitory effect of C34 on HIV-1 replication, we designed new C34-derived peptides based on computational analysis of the stable conformation of the 6-helix bundle. Newly designed peptides showed a stronger inhibitory effect on the replication of recombinant viruses containing CRF01_AE, subtype B or subtype C Env than C34 or a fusion inhibitor, T-20. In addition, these peptides inhibited the replication of a T-20-resistant virus. We propose that these peptides could be applied to develop novel antiretroviral compounds to inhibit the replication of various subtypes of HIV-1 as well as of T-20-resistant variants.