Compact, Consumer Off the Shelf Remotely Piloted Aircraft Systems (COTS-RPAS) in Observing Haliastur indus, the Kali, or Brahminy Kites (original) (raw)
Related papers
Fine-scale bird monitoring from light unmanned aircraft systems
Ibis, 2012
Unmanned aircraft systems (UAS) are remote-controlled devices capable of collecting information from difficultto-access places while minimizing disturbance. Although UAS are increasingly used in many research disciplines, their application to wildlife research remains to be explored in depth. Here, we report on the use of a small UAS to monitor temporal changes in breeding population size in a Black-headed Gull Chroicocephalus ridibundus colony. This method makes it possible to obtain georeferenced data on nest locations without causing colony disturbance, which would not otherwise be possible via direct ground observations.
Small Unmanned Aircraft Systems for Low-Altitude Aerial Surveys
Journal of Wildlife Management, 2010
Unmanned aircraft systems (UASs) are proposed as a useful alternative to manned aircraft for some aerial wildlife surveys. We described the components and current capabilities of a small UAS developed specifically for wildlife and ecological surveys that is currently in field use for a variety of applications. We also reviewed government regulations currently affecting the use of UASs in civilian airspace. Information on capabilities and regulations will be valuable for agencies and individuals interested in the potential UASs offer for monitoring wildlife populations and their habitat. Descriptions of current uses and recommendations for future employment will be helpful in implementing this technology efficiently for aerial surveys as the civilian sector begins to adopt UASs for peacetime missions.
Journal of Unmanned Vehicle Systems, 2014
Small unmanned aircraft systems (UASs) are often suited to applications where the cost, resolution, and (or) operational inflexibility of conventional remote sensing platforms is limiting. Remote sensing with small UASs is still relatively new, and there is limited understanding of how the data are acquired and used for scientific purposes and decision making. This paper provides practical guidance about the opportunities and limitations of small UAS-based remote sensing by highlighting a small sample of scientific and commercial case studies. Case studies span four themes: (i) mapping, which includes case studies to measure aggregate stockpile volumes and map river habitat; (ii) feature detection, which includes case studies on grassland image classification and detection of agricultural crop infection; (iii) wildlife and animal enumeration, with case studies describing the detection of fish concentrations during a major salmon spawning event, and cattle enumeration at a concentrated animal feeding operation; (iv) landscape dynamics with a case study of arctic glacier change. Collectively, these case studies only represent a fraction of possible remote sensing applications using small UASs, but they provide insight into potential challenges and outcomes, and help clarify the opportunities and limitations that UAS technology offers for remote sensing of the environment.
Quadcopter Applications for Wildlife Monitoring
Recently, Unmanned Aerial Vehicle (UAV) had been use as an instrument for wildlife research. Most of that, using an airplane type which need space for runaway. Copter is UAV type that can fly at canopy space and do not need runaway. The research aims are to examine quadcopter application for wildlife monitoring, measure the accuracy of data generated and determine effective, efficient and appropriate technical recommendation in accordance with the ethics of wildlife photography. Flight trials with a camera 12 - 24 MP at altitude ranges from 50-200 m above ground level (agl), producing aerial photographs with spatial resolution of 0.85 – 4.79 cm/pixel. Aerial photos quality depends on the type and setting of camera, vibration damper system, flight altitude and punctuality of the shooting. For wildlife monitoring the copter is recommended to take off at least 300 m from the target, and flies at 50 - 100 m agl with flight speed of 5 - 7 m/sec on fine weather. Quadcopter presence with a distance more than 30 m from White-bellied Sea Eagles (Haliaeetus leucogaster) nest and Proboscis Monkey (Nasalis larvatus) did not cause negative response. Quadcopter application should pay attention to the behaviour and characteristic of wildlife.
Small unmanned aircraft systems (UASs) are often suited to applications where the cost, resolution, and (or) operational inflexibility of conventional remote sensing platforms is limiting. Remote sensing with small UASs is still relatively new, and there is limited understanding of how the data are acquired and used for scientific purposes and decision making. This paper provides practical guidance about the opportunities and limitations of small UAS-based remote sensing by highlighting a small sample of scientific and commercial case studies. Case studies span four themes: (i) mapping, which includes case studies to measure aggregate stockpile volumes and map river habitat; (ii) feature detection, which includes case studies on grassland image classification and detection of agricultural crop infection; (iii) wildlife and animal enumeration, with case studies describing the detection of fish concentrations during a major salmon spawning event, and cattle enumeration at a concentrat...
Technological advances for wildlife monitoring have expanded our ability to study behavior and space use of many species. But biotelemetry is limited by size, weight, data memory and battery power of the attached devices, especially in animals with light body masses, such as the majority of bird species. In this study, we describe the combined use of GPS data logger information obtained from free-ranging birds, and environmental information recorded by unmanned aerial systems (UASs). As a case study, we studied habitat selection of a small raptorial bird, the lesser kestrel Falco naumanni, foraging in a highly dynamic landscape. After downloading spatio-temporal information from data loggers attached to the birds, we programmed the UASs to fly and take imagery by means of an onboard digital camera documenting the flight paths of those same birds shortly after their recorded flights. This methodology permitted us to extract environmental information at quasi-real time. We demonstrate that UASs are a useful tool for a wide variety of wildlife studies.
The Use of Conservation Drones in Ecology and Wildlife Research
Abstract Conservation drones are remote-controlled devices capable of collecting information from difficult-to-access places while minimizing disturbance. Although drones are increasingly used in many research disciplines, their application to wildlife research remains to be explored in depth. This paper reports on the use of Phantom 2 Vision+ for monitoring areas in two national parks in South Korea. The first research area was conducted in Chiaksan National Park, and the second in Taeanhaean National Park. The aim of this research is to introduce ecologists and researchers alike to conservation drones and to show how these new tools have are fundamentally helping in the development of natural sciences. We also obtained photographs and videos of monitoring areas within our test site. Key words: drone, ecology, Phantom 2 Vision+, Unmanned Aircraft Systems (UAS), wildlife