Collapse of Thermoresponsive Brushes and the Tuning of Protein Adsorption (original) (raw)

Nanostructured Biointerfaces: Nanoarchitectonics of Thermoresponsive Polymer Brushes Impact Protein Adsorption and Cell Adhesion

ACS Applied Materials & Interfaces, 2015

Controlling the reversibility, quantity, and extent of biomolecule interaction at interfaces has a significant relevance for biomedical and biotechnological applications, because protein adsorption is always the first step when a solid surface gets in contact with a biological fluid. Polymer brushes, composed of end-tethered linear polymers with sufficient grafting density, are very promising to control and alter interactions with biological systems because of their unique structure and distinct collaborative response to environmental changes. We studied protein adsorption and cell adhesion at polymer brush substrates which consisted of poly(Nisopropylacrylamide) (PNIPAAm), having a lower critical solution temperature (LCST), to control bioadsorptive processes by changing the environmental temperature. Preparing the PNIPAAm brushes by the "grafting-to"-method two differently synthesized PNIPAAm polymers were used, at which one possessed an additional hydrophobic terminal headgroup. It is known that hydrophobic moieties can influence protein adsorption significantly. The films were comprehensively analyzed by in situ spectroscopic ellipsometry, contact angle measurements, streaming potential, and atomic force microscopy. Our study was mainly focused on the investigation of the fibrinogen (FGN) adsorption responsiveness both on homo polymer PNIPAAm brushes with and without the hydrophobic terminal functionalization, and further on binary brushes made of the polyelectrolyte poly(acrylic acid) (PAA) and one of the prior described two PNIPAAm species. The results show that the terminal hydrophobic modification of PNIPAAm has a considerable impact on wettability, LCST, and morphology of the homo and the binary brush systems, which consequently led to an alteration of FGN adsorption. By using binary PNIPAAm-PAA brushes with different composition it was possible to induce stimuli dependent FGN adsorption with a considerable amplified switching effect by introducing a hydrophobic terminal residue to PNIPAAm. Cell adhesion studies with human mesenchymal stem cells reflected the results of the FGN adsorption.

Critical adsorption of a single macromolecule in polymer brushes

Soft matter, 2014

The adsorption of long flexible macromolecules by polymer brush-coated surfaces is studied by molecular dynamics simulations and by calculations using density functional and self-consistent field theories. The case of repulsive interactions between the substrate surface and the monomers of both the brush polymers and the extra chains that can get absorbed into the brush is considered. Under good solvent conditions, critical absorption can occur, if the interaction between the monomers of the brush polymers and the extra chain is (weakly) attractive. It is shown that it is possible to map out the details of the critical absorption transition, if the chain length and/or the grafting density of the brush polymers are varied. In this way both the strength and the range of the effective adsorption potential of the substrate surface can be controlled. However, it is found that in the general case there is no straightforward mapping of the present problem to the simpler problem of polymer ...

An Experimental–Theoretical Analysis of Protein Adsorption on Peptidomimetic Polymer Brushes

Langmuir, 2012

Surface-grafted water soluble polymer brushes are being intensely investigated for preventing protein adsorption to improve biomedical device function, prevent marine fouling, and enable applications in biosensing and tissue engineering. In this contribution, we present an experimental-theoretical analysis of a peptidomimetic polymer brush system with regard to the critical brush density required for preventing protein adsorption at varying chain lengths. A mussel adhesive-inspired DOPA-Lys pentapeptide surface grafting motif enabled aqueous deposition of our peptidomimetic polypeptoid brushes over a wide range of chain densities. Critical densities of 0.88 nm-2 for a relatively short polypeptoid 10-mer to 0.42 nm-2 for a 50-mer were identified from measurements of protein adsorption. The experiments were also compared with the protein adsorption isotherms predicted by a molecular theory. Excellent agreements in terms of both the polymer brush structure and the critical chain density were obtained. Furthermore, atomic force microscopy (AFM) imaging is shown to be useful in verifying the critical brush density for preventing protein adsorption. The present co-analysis of experimental and theoretical results demonstrates the significance of characterizing the critical brush density in evaluating the performance of an anti-fouling polymer brush system. The high fidelity of the agreement between the experiments and molecular theory also indicate that the theoretical approach presented can aid in the practical design of antifouling polymer brush systems.

Protein Resistance of PNIPAAm Brushes: Application to Switchable Protein Adsorption

Langmuir, 2010

Protein adsorption, as the primary process occurring when a foreign surface comes into contact with a biosystem, was studied on thin polymer brush films consisting of poly(N-isopropylacrylamide) (PNIPAAm) and poly(2-vinylpyridine) (P2VP). These films were prepared by the "grafting to" method. The protein resistance of stimuli responsive PNIPAAmbrushes toward serum albumin was recorded and compared with protein adsorption on P2VP brushes. To achieve a better understanding of protein resistance, PNIPAAm brushes with different molecular weights were investigated below and above the lower critical solution temperature of 32°C. To use these findings for the adjustment and switching of protein adsorption, in a first attempt the adsorption on a mixed brush system consisting of PNIPAAm and P2VP chains was studied. This system showed temperature-dependent adsorption behavior due to the presence of PNIPAAm, representing a smart surface with stimuli-responsive changes in the physicochemical surface properties. With this mixed brush, the adsorbed amount of protein could be controlled, depending on composition and the temperature of the surroundings.

Ternary Protein Adsorption onto Brushes: Strong versus Weak

Langmuir, 2009

Attractive interactions between proteins and polyethylene glycol (PEG) give rise to ternary adsorption within PEG brushes. Experimental evidence suggests two ternary adsorption modes: (i) weak, due to nonspecific weak attraction between PEG monomers and the surface of the protein, as exemplified by serum albumin and (ii) strong, due to strong binding of PEG segments to specific protein sites as it occurs for PEG antibodies, which can involve the terminal adsorption of free chain ends or backbone adsorption due to binding to interior chain segments. Ternary adsorption affects the capacity of brushes to repress protein adsorption. The strong adsorption of antibodies can trigger an immune response that may affect the biocompatibility of the surface. Theoretical adsorption isotherms and protein concentration profiles of the three cases are compared for "parabolic" brushes, allowing for the grafting density, 1 / Σ , and degree of polymerization of the PEG chains, N, as well as the volume and surface area of the proteins. The amount of adsorbed protein per unit area, Γ, exhibits a mode-specific maximum in all three cases. For backbone and weak adsorption, Γ ∼ N, whereas for terminal adsorption, Γ ∼ N 0. In every case, the concentration profile of adsorbed proteins, c tern (z), exhibits a maximum at z max >0 that shifts outward as Σ decreases; z max =0 occurs only for weak and backbone adsorption at a high Σ value.

Self-consistent field theory of protein adsorption in a non-Gaussian polyelectrolyte brush

Physical Review E, 2006

Self-consistent field theory of protein adsorption in a non-Gaussian polyelectrolyte brush," Phys. Rev. E 73 011802 (2006). You can download the published version at: http://dx.Abstract To describe adsorption of globular protein molecules in a polyelectrolyte brush we use the strongstretching approximation of the Edwards self-consistent field equation, combined with corrections for a non-Gaussian brush. To describe chemical potentials in this mixture of (globular) species of widely varying sizes (ions, brush polyelectrolyte segments, globular protein molecules), we use the Boublik-Mansoori-Carnahan-Starling-Leland equation-of-state derived for polydisperse mixtures of spherical particles. The polyelectrolyte chain is described in this approach as a string-of-beads with the beads of a size related to the chain diameter. We use the one-dimensional Poisson equation to describe the electrostatic field and include the ionizable character both of the brush polyions and the protein molecules. This model explains the experimental observation of high amounts of protein adsorption in a polyacid brush for pH values above the iso-electric point of the protein as being due to charge reversal

Investigation of the Effect of Molecular Weight, Density, and Initiator Structure Size on the Repulsive Force between a PNIPAM Polymer Brush and Protein

Advances in Polymer Technology

This paper focuses on the effect of degree of polymerization (N), density ( σ ), and pattern size ( x ) on the interaction force between a periodically patterned Poly(N-isopropylacrylamide) (PNIPAM) brush and protein. The hydrophobic interaction, the Van der Waals attractive force, and the steric repulsive force were expressed in terms of N , σ , and x . The osmotic constant (k1) and the entropic constant (k2) were determined from the fit of the steric repulsive force to an experimentally obtained force distance curve. The osmotic constant was 0.105, and the entropic constant was 0.255. Using these constants, the steric repulsive force was plotted as a function of the separation distance(s) between the substrate and the protein. The forces were determined at a separation distance equal to 0.3 nm, where L0 is the equilibrium thickness of the PNIPAM brush. At this separation distance, the value of the steric repulsive force was much higher than the value of the sum of the hydrophobic ...

Brush-Sheathed Particles Diffusing at Brush-Coated Surfaces in the Thermally Responsive PNIPAAm System

Langmuir, 2007

Phase-contrast microscopy and particle tracking algorithms are used to study the near-surface diffusion of poly-(N-isopropylacrylamide) (PNIPAAm) brush functionalized micron-sized silica microspheres after sedimentation from aqueous suspension onto planar substrates coated with a similar polymer brush above and below the lower critical solution temperature (LCST) of PNIPAAm, 32°C. A small negative charge on the wall and the particles (potential)-6 mV) prevents adhesion above and below the LCST. The near-surface translational diffusion coefficient (D surface) is compared to the bulk-phase translational diffusion coefficient (D bulk), which was measured by dynamic light scattering. We find that D surface /D bulk ≈ 0.6 at temperatures T < 32°C but rises abruptly to ∼0.8-0.9 at T > 32°C. Near-surface diffusion is expected to be slower than bulk diffusion owing to hydrodynamic coupling to the wall, implying reduced hydrodynamic coupling at the higher temperatures, perhaps mediated by enhanced electrostatic repulsion above the LCST transition.

Adsorption of proteins on spherical polyelectrolyte brushes in aqueous solution

Physical Chemistry Chemical Physics, 2003

We consider the adsorption of bovine serum albumin (BSA) on spherical polyelectrolyte brushes (SPB). The SPB consist of asolid polystyrene core of 100 nm diameter onto which linear polyelectrolyte chains [poly(acrylic acid), (PAA)] are grafted. The adsorption of BSA is studied at a pH of 6.1 at different concentrations of added salt and buffer. We observe strong adsorption of BSA onto the SPB despite the effect that the particles as weil as the dissolved BSA are charged negatively. The adsorption of BSA is strongest at low salt concentration and decreases drastically with increasing amounts of added salt. Virtually no adsorption takes place at salt concentration of 0.1 M. Moreover, the adsorbed protein can be washed out again by raising the ionic strength from low to high values. A major driving force for the adsorption is located at a lower pH within the brush at low ionic strength. Thus, the isoelectric point of the protein may be approached or even reached. In this case strong interaction between the SPB and the protein results. Moreover, the negative charge of the polyelectrolyte interacts with the patches of positive charges on the protein. In this way the protein becomes a multivalent counterion within the brush and monovalent counterions will be released. All results demonstrate that the SPB present a new elass of colloidal carrier partieIes whose interaction with proteins can be tuned in a well-defined fashion.