Electrospun TiO2 nanofiber integrated lab-on-a-disc for ultrasensitive protein detection from whole blood (original) (raw)
2014, Lab on a chip
ELISA-based devices are promising tools for the detection of low abundant proteins in biological samples. Reductions of the sample volume and assay time as well as full automation are required for their potential use in point-of-care diagnostic applications. Here, we present a highly efficient lab-on-a-disc composed of a TiO2 nanofibrous mat for sensitive detection of serum proteins with a broad dynamic range, with only 10 μL of whole blood within 30 min. The TiO2 nanofibers provide high specific surface area as well as active functional groups to capture large amounts of antibodies on the surface. In addition, the device offers efficient mixing and washing for improving the signal-to-noise ratio, thus enhancing the overall detection sensitivity. We employ the device for the detection of cardiac biomarkers, C-reactive protein (CRP) and cardiac troponin I (cTnI), spiked in phosphate-buffered saline (PBS) as well as in serum or whole blood. The device exhibited a wide dynamic range of...
Related papers
Journal of visualized experiments : JoVE, 2016
Enzyme-linked immunosorbent assay (ELISA) is a promising method to detect small amount of proteins in biological samples. The devices providing a platform for reduced sample volume and assay time as well as full automation are required for potential use in point-of-care-diagnostics. Recently, we have demonstrated ultrasensitive detection of serum proteins, C-reactive protein (CRP) and cardiac troponin I (cTnI), utilizing a lab-on-a-disc composed of TiO2 nanofibrous (NF) mats. It showed a large dynamic range with femto molar (fM) detection sensitivity, from a small volume of whole blood in 30 min. The device consists of several components for blood separation, metering, mixing, and washing that are automated for improved sensitivity from low sample volumes. Here, in the video demonstration, we show the experimental protocols and know-how for the fabrication of NFs as well as the disc, their integration and the operation in the following order: processes for preparing TiO2 NF mat; tra...
Detection of Cardiovascular CRP Protein Biomarker Using a Novel Nanofibrous Substrate
Biosensors
It is known that different diseases have characteristic biomarkers that are secreted very early on, even before the symptoms have developed. Before any kind of therapeutic approach can be used, it is necessary that such biomarkers be detected at a minimum concentration in the bodily fluids. Here, we report the fabrication of an interdigitated sensing device integrated with polyvinyl alcohol (PVA) nanofibers and carbon nanotubes (CNT) for the detection of an inflammatory biomarker, C-reactive protein (CRP). The limit of detection (LOD) was achieved in a range of 100 ng mL−1 and 1 fg mL−1 in both phosphate buffered saline (PBS) and human serum (hs). Furthermore, a significant change in the electrochemical impedance from 45% to 70% (hs) and 38% to 60% (PBS) over the loading range of CRP was achieved. The finite element analysis indicates that a non-redox charge transduction at the solid/liquid interface on the electrode surface is responsible for the enhanced sensitivity. Furthermore, ...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.