Spatially patterned matrix elasticity directs stem cell fate (original) (raw)

European Society of Biomechanics S.M. Perren Award 2012: The external mechanical environment can override the influence of local substrate in determining stem cell fate

Journal of Biomechanics, 2012

The aim of this study was to explore how cell-matrix interactions and extrinsic mechanical signals interact to determine stem cell fate in response to transforming growth factor-β3 (TGF-β3). Bone marrow derived mesenchymal stem cells (MSCs) were seeded in agarose and fibrin hydrogels and subjected to dynamic compression in the presence of different concentrations of TGF-β3. Markers of chondrogenic, myogenic and endochondral differentiation were assessed. MSCs embedded within agarose hydrogels adopted a spherical cell morphology, while cells directly adhered to the fibrin matrix and took on a spread morphology. Free-swelling agarose constructs stained positively for chondrogenic markers, with MSCs appearing to progress towards terminal differentiation as indicated by mineral staining. MSC seeded fibrin constructs progressed along an alternative myogenic pathway in long-term free-swelling culture. Dynamic compression suppressed differentiation towards any investigated lineage in both fibrin and agarose hydrogels in the short-term. Given that fibrin clots have been shown to support a chondrogenic phenotype in vivo within mechanically loaded joint defect environments, we next explored the influence of long term (42 days) dynamic compression on MSC differentiation. Mechanical signals generated by this extrinsic loading ultimately governed MSC fate, directing MSCs along a chondrogenic pathway as opposed to the default myogenic phenotype supported within unloaded fibrin clots. In conclusion, this study demonstrates that external cues such as the mechanical environment can override the influence specific substrates, scaffolds or hydrogels have on determining mesenchymal stem cell fate. The temporal data presented in this study highlights the importance of considering how MSCs respond to extrinsic mechanical signals in the long term.

Plasma and Nuclear Membranes Convey Mechanical Information to Regulate Mesenchymal Stem Cell Lineage

Stem cells (Dayton, Ohio), 2016

Numerous factors including chemical, hormonal, spatial and physical cues determine stem cell fate. While the regulation of stem cell differentiation by soluble factors is well characterized, the role of mechanical force in the determination of lineage fate is just beginning to be understood. Investigation of the role of force on cell function has largely focused on "outside-in" signaling, initiated at the plasma membrane. When interfaced with the extracellular matrix, the cell utilizes integral membrane proteins, such as those found in focal adhesion complexes to translate force into biochemical signals. Akin to these "outside-in" connections, the internal cytoskeleton is physically linked to the nucleus, via proteins that span the nuclear membrane. Although structurally and biochemically distinct, these two forms of mechanical coupling influence stem cell lineage fate and, when disrupted, often lead to disease. Here we provide an overview of how mechanical coupl...

Environmental Biomechanics Substantiated by Defined Pillar Micropatterns Govern Behavior of Human Mesenchymal Stem Cells

Cell Transplantation, 2012

While evidence on the impact of the biomechanical environment elasticity on human mesenchymal stem cell (hMSC) behavior is growing, the aspect of micropatterning is still poorly understood. Thus, the present study aimed at investigating the influence of defined environmental micropatterning on hMSC behavior. Following characterization, hMSCs were grown on defined pillar micropatterns of 5, 7, 9, and 11 μm. With respect to cell behavior, primary hMSC adhesion was detected by indirect immunofluorescence (iIF) for paxillin, vinculin, integrin αV, and actin, while proliferation was visualized by histone H3. Morphogenesis was monitored by scanning electron microscopy and the expression of stem cell-specific biomarkers by real-time PCR. Favoritism of primary adhesion of hMSCs on pillar tops occurred at smaller pillar micropatterns, concomitant with cell flattening. While vinculin, integrin αV, and paxillin appeared initially more cytoplasmic, high pillar micropatterns favored a progressiv...