Diverse catalytic reactivity of a dearomatized PN3P*–nickel hydride pincer complex towards CO2 reduction (original) (raw)

Abstract

A dearomatized PN3P*–nickel hydride complex catalyzes hydrosilylation of CO2.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (97)

  1. Figure S1. Typical time profile.
  2. Table S4. Optimization of the reductive functionalization of dibenzylamine with CO2 and Ph2SiH2 catalyzed by PN 3 P*-Ni hydride complexes. a 1,2-dimethylindoline:
  3. H NMR (CDCl3, 600 MHz): δ=7.11-7.05 (m, 2H), 6.68 (t, J = 7.1 Hz, 1H), 6.47 (d, J = 7.
  4. 9 Hz, 1H), 3.45-3.38 (m, 1H), 3.09 (q, J = 8.2 Hz, 1H), 2.73 (s, 3H), 2.64-2.59 (m, 1H), 1.34 (d, J = 6.2 Hz, 3H).
  5. C NMR (CDCl3, 151 MHz): δ=153.7, 129.3, 127.5, 124.1, 117.9, 107.3, 63.0, 37.5, 33.9, 18.9.
  6. -(4-chlorophenyl)-N,N-dimethylmethanamine: [10] 1 H NMR (CDCl3, 600 MHz): δ=7.28 (d, J = 8.
  7. Hz, 2H), 7.23 (d, J = 8.5 Hz, 2H), 3.37 (s, 2H), 2.22 (s, 6H). 13 C NMR (CDCl3, 151 MHz): δ=137.6, 132.8, 130.4, 128.5, 63.7, 45.4.
  8. -(4-methoxyphenyl)-N,N-dimethylmethanamine: [11] 1 H NMR (CDCl3, 600 MHz): δ=7.19 (d, J = 8.
  9. Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 3.75 (s, 3H), 3.34 (s, 2H), 2.20 (s, 6H).
  10. C NMR (CDCl3, 151
  11. MHz): δ=158.8, 130.7, 130.3, 113.6, 63.7, 55.1, 45.1.
  12. N,N-dimethyl-1,1-diphenylmethanamine: [12]
  13. H NMR (CDCl3, 600 MHz): δ=7.51 (d, J = 7.3 Hz, 4H), 7.34 (t, J = 7.6 Hz, 4H), 7.24 (t, J = 7.3 Hz, 2H), 4.15 (s, 1H), 2.28 (s, 6H).
  14. C NMR (CDCl3, 151
  15. MHz): δ=143.6, 128.6, 127.9, 127.0, 78.2, 44.9.
  16. N,N,4-trimethylaniline: [8]
  17. H NMR (CDCl3, 600 MHz): δ=7.19-7.17 (m, 2H), 6.82-6.80 (m, 2H),
  18. C NMR (CDCl3, 151 MHz): δ=149.0, 129.7, 126.1, 113.3, 41.1, 20.4.
  19. N,N,2-trimethylaniline: [2]
  20. H NMR (CDCl3, 600 MHz): δ=7.35-7.32 (m, 2H), 7.22-7.20 (m, 1H),
  21. 14-7.12 (m, 1H), 2.87 (s, 6H), 2.53 (s, 3H).
  22. C NMR (CDCl3, 151 MHz): δ=152.8, 132.2, 131.2, 126.5, 122.7, 118.4, 44.3, 18.5.
  23. -methoxy-N,N-dimethylaniline: [3]
  24. H NMR (CDCl3, 600 MHz): δ=7.00-6.86 (m, 4H), 3.89 (s, 3H), 2.79 (s, 6H).
  25. C NMR (CDCl3, 151 MHz): δ=152.6, 142.6, 122.6, 120.9, 118.3, 111.1, 55.4, 43.5.
  26. -fluoro-N,N-dimethylaniline: [2]
  27. H NMR (CDCl3, 600 MHz): δ=7.11-7.08 (m, 2H), 6.80-6.78 (m, 2H), 2.99 (s, 6H).
  28. C NMR (CDCl3, 151 MHz): δ=155.6 (d, J = 234.6 Hz), 147.6, 115.3 (d, J = 22.
  29. Hz), 113.8 (d, J = 7.6 Hz), 41.0.
  30. N,N,3,5-tetramethylaniline: [13] 1
  31. H NMR (CDCl3, 600 MHz): δ=6.58-6.57 (m, 3H), 3.08 (s, 6H),
  32. 47 (s, 6H).
  33. C NMR (CDCl3, 151 MHz): δ=151.0, 138.6, 118.9, 110.9, 40.8, 21.9.
  34. N,N,2,6-tetramethylaniline: [14] 1
  35. H NMR (CDCl3, 600 MHz): δ=7.24-7.22 (m, 2H), 7.19-7.17 (m, 1H), 3.07 (s, 6H), 2.55 (s, 6H).
  36. C NMR (CDCl3, 151 MHz): δ=149.8, 137.2, 128.9, 124.9, 42.6, 19.3. 2,6-diisopropyl-N,N-dimethylaniline: [14] 1 H NMR (CDCl3, 600 MHz): δ=7.57-7.55 (m, 1H),
  37. C NMR (CDCl3, 151
  38. MHz): δ=149.3, 147.5, 126.5, 124.2, 44.4, 28.4, 24.6.
  39. N,N,2,4,6-pentamethylaniline: [15] 1
  40. H NMR (CDCl3, 600 MHz): δ=7.05 (s, 2H), 3.04 (s, 6H), 2.51 (s, 6H), 2.48 (s, 3H).
  41. C NMR (CDCl3, 151 MHz): δ=147.2, 137.1, 134.3, 129.6, 42.7, 20.8, 19.1. ethyl 4-(dimethylamino)benzoate: [16]
  42. H NMR (CDCl3, 600 MHz): δ=7.91 (d, J = 6.8 Hz, 2H),
  43. C NMR (CDCl3, 176 MHz): δ=167.1, 153.2, 131.2, 117.2, 110.7, 60.1, 40.1, 14.5.
  44. N-(4-chlorophenyl)-N-methylformamide: 1 H NMR (CDCl3, 500 MHz): δ=8.42, 8.32 (s, total 1H), 7.38-7.31 (m, 2H), 7.10-7.07 (m, 2H), 3.32, 3.27 (s, total 3H).
  45. C NMR (CDCl3, 126 MHz): δ=162.0, 161.8, 140.5, 138.5, 131.5, 130.9, 129.5, 128.8, 124.3, 123.2, 36.4, 31.7.
  46. N-benzyl-N-phenylformamide: [17] 1 H NMR (CDCl3, 600 MHz): δ=8.52, 8.49 (s, total 1H), 7.27- 7.21 (m, total 6H), 7.17-7.13 (m, total 2H), 7.05-7.04 (m, total 2H), 4.97, 4.73 (s, total 2H).
  47. C NMR (CDCl3, 151 MHz): δ=162.3, 161.9, 140.6, 138.7, 136.4, 129.2, 128.6, 128.4, 128.2, 127.5, 127.4, 127.0, 126.9, 126.4, 126.2, 124.9, 123.4, 53.3, 48.2.
  48. N-benzylformamide: [19]
  49. H NMR (CDCl3, 600 MHz): δ=8.05, 7.96, 7.94 (s, total 1H), 7.34-7.17, 6.71 (m and br, total 6H), 4.32, 4.24 (d, J = 6.2 Hz and d, J = 6.4 Hz, total 2H).
  50. C NMR (CDCl3, 151
  51. MHz): δ=164.9, 161.5, 137.7, 137.6, 128.7, 128.5, 127.7, 127.4, 127.3, 126.8, 45.5, 41.
  52. Hz, total 1H), 7.30-7.24, 7.17-7.14 (m, total 4H), 6.24, 6.17 (br, total 1H), 4.38, 4.34 (d, J = 6.1
  53. Hz, and d, J = 6.4 Hz, total 2H).
  54. C NMR (CDCl3, 151 MHz): δ=164.9, 161.4, 136.3, 136.2, 133.8, 133.4, 129.1, 128.9, 128.4, 45.1, 41.1.
  55. H NMR (CDCl3, 600 MHz): δ=8.01, 7.92 (s, and d, J = 12.
  56. Hz, total 1H), 7.11-7.04 (m, 2H), 6.80-6.74 (m, 2H), 4.22, 4.16 (d, J = 5.6 Hz, and d, J = 6.3
  57. Hz, total 2H), 3.70, 3.67 (s, total 3H). 13 C NMR (CDCl3, 151 MHz): δ=164.8, 161.3, 159.0, 158.7, 129.8, 129.6, 128.8, 128.2, 114.0, 113.8, 55.1, 55.1, 45.0, 41.2.
  58. H NMR (CDCl3, 600 MHz): δ=7.93, 7.87 (s, and d, J = 11.
  59. 9 Hz, total 1H), 7.45, 6.84-6.82 (br and m, total 1H), 7.14-6.99 (m, total 2H), 6.78-6.67 (m, total 2H), 4.25, 4.09 (d, J = 6.2 Hz, and d, J = 6.4 Hz, total 2H), 3.61, 3.60 (s, total 3H).
  60. C NMR (CDCl3, 151 MHz): δ=164.8, 161.2, 156.7, 156.6, 128.7, 128.2, 128.1, 128.1, 125.6, 125.3, 120.0, 119.9, 109.9, 109.7, 54.6, 41.0, 36.8.
  61. N-cyclohexylformamide: [22] 1 H NMR (CDCl3, 600 MHz): δ=7.87-7.83 (m, 1H), 7.08, 6.86 (br, total 1H), 3.59-3.53, 3.06-3.05 (m, total 1H), 1.67-1.64 (m, 2H), 1.51-1.48 (m, 2H), 1.40-1.37 (m, 1H), 1.14-1.07, 0.98-0.91 (m, 5H).
  62. C NMR (CDCl3, 151 MHz): δ=163.6, 160.5, 51.8, 46.8, 34.2, 32.5, 25.1, 25.0, 24.7, 24.5.
  63. H NMR (CDCl3, 600 MHz): δ=8.07, 8.06, 8.04, 8.02 (s, total 1H), 7.31-7.22 (m, total 4H), 7.13, 7.02 (br, total 1H), 5.15-5.10, 4.64-4.59 (m, total 1H), 1.51, 1.45 (d, J = 6.9 Hz and d, J = 6.
  64. C NMR (CDCl3, 151 MHz): δ=164.5, 163.3, 160.7, 142.9, 142.8, 128.8, 128.6, 127.6, 127.3, 126.0, 125.7, 51.9, 47.5, 23.4, 21.8.
  65. N-benzhydrylformamide: [19] 1 H NMR (CDCl3, 600 MHz): δ=8.07, 8.05 (s, total 1H), 7.32-7.21 (m, total 10H), 6.26, 5.70 (d, J = 8.2 Hz, and d, J = 8.6 Hz, total 1H).
  66. C NMR (CDCl3, 151 MHz): δ=164.6, 160.6, 141.1, 140.9, 128.9, 128.7, 128.0, 127.5, 127.4, 127.3, 60.0, 55.6.
  67. N-p-tolylformamide: [17]
  68. H NMR (CDCl3, 500 MHz): δ=8.90, 8.88, 8.01 (s, total 1H), 8.64, 8.62, 8.31, 8.31 (s, total 1H), 7.44-7.42, 7.15-7.10, 7.00-6.99 (m, total 4H), 2.33, 2.30 (s, total 3H).
  69. C NMR (CDCl3, 126 MHz): δ=163.3, 159.5, 135.2, 134.5, 134.3, 130.3, 129.6, 120.2, 119.1, 21.0, 20.9. 13. References.
  70. O. Santoro, F. Lazreg, Y. Minenkov, L. Cavallo, C. S. J. Cazin, Dalton Trans. 2015, 44, 18138.
  71. Z. Yang, H. Zhang, B. Yu, Y. Zhao, Z. Ma, G. Ji, B. Han, Z. Liu, Chem. Commun. 2015, 51, 11576.
  72. L. Zhang, Y. Zhang, Y. Deng, F. Shi, RSC Adv. 2015, 5, 14514.
  73. H. Kimura, Y. Yokota, Y. Sawamoto, Catal. Lett. 2005, 99, 133.
  74. W.-C. Chen, J.-S. Shen, T. Jurca, C.-J. Peng, Y.-H. Lin, Y.-P. Wang, W.-C. Shih, G. P. A. Yap, T.-G. Ong, Angew. Chem., Int. Ed. 2015, 54, 15207.
  75. R. Adam, J. R. Cabrero-Antonino, K. Junge, R. Jackstell, M. Beller, Angew. Chem., Int. Ed. 2016, 55, 11049.
  76. E. Blondiaux, J. Pouessel, T. Cantat, Angew. Chem., Int. Ed. 2014, 53, 12186.
  77. X.-L. Du, G. Tang, H.-L. Bao, Z. Jiang, X.-H. Zhong, D. S. Su, J.-Q. Wang, ChemSusChem 2015, 8, 3489.
  78. D. W. Stephan, S. Greenberg, T. W. Graham, P. Chase, J. J. Hastie, S. J. Geier, J. M. Farrell, C. C. Brown, Z. M. Heiden, G. C. Welch, M. Ullrich, Inorg. Chem. 2011, 50, 12338.
  79. Y. Li, X. Fang, K. Junge, M. Beller, Angew. Chem., Int. Ed. 2013, 52, 9568.
  80. O. Saidi, A. J. Blacker, G. W. Lamb, S. P. Marsden, J. E. Taylor, J. M. J. Williams, Org. Process Res. Dev. 2010, 14, 1046.
  81. K.-J. Xiao, J.-M. Luo, X.-E. Xia, Y. Wang, P.-Q. Huang, Chem. -Eur. J. 2013, 19, 13075.
  82. A. G. Giumanini, G. Chiavari, M. M. Musiani, P. Rossi, Synthesis 1980, 743.
  83. Y. Li, I. Sorribes, T. Yan, K. Junge, M. Beller, Angew. Chem., Int. Ed. 2013, 52, 12156.
  84. K. Beydoun, T. vom Stein, J. Klankermayer, W. Leitner, Angew. Chem., Int. Ed. 2013, 52, 9554.
  85. A. Schmidt, T. Habeck, B. Snovydovych, W. Eisfeld, Org. Lett. 2007, 9, 3515.
  86. L. Hao, Y. Zhao, B. Yu, Z. Yang, H. Zhang, B. Han, X. Gao, Z. Liu, ACS Catal. 2015, 4989.
  87. D. B. Nale, B. M. Bhanage, Synlett 2016, 27, 1413.
  88. T. V. Q. Nguyen, W.-J. Yoo, S. Kobayashi, Angew. Chem., Int. Ed. 2015, 54, 9209.
  89. C. C. Chong, R. Kinjo, Angew. Chem., Int. Ed. 2015, 12116.
  90. A. Kulkarni, R. Gianatassio, B. Torok, Synthesis 2011, 1227.
  91. S. Zhang, Q. Mei, H. Liu, H. Liu, Z. Zhang, B. Han, RSC Adv. 2016, 6, 32370.
  92. S. H. Jung, J. H. Ahn, S. K. Park, J.-K. Choi, Bull. Korean Chem. Soc. 2002, 23, 149.
  93. J. Song, B. Zhou, H. Liu, C. Xie, Q. Meng, Z. Zhang, B. Han, Green Chem. 2016, 18, 3956.
  94. K. Motokura, N. Takahashi, D. Kashiwame, S. Yamaguchi, A. Miyaji, T. Baba, Catal. Sci. Technol. 2013, 3, 2392.
  95. H. Lv, Q. Xing, C. Yue, Z. Lei, F. Li, Chem. Commun. 2016, 52, 6545.
  96. S. Krishnamurthy, Tetrahedron Lett. 1982, 23, 3315.
  97. G. Kobayashi, T. Saito, Y. Kitano, Synthesis 2011, 2011, 3225.