Wakes of Wind Turbines in Yaw for Wind Farm Power Optimization (original) (raw)
Related papers
Further Study on the Effects of Wind Turbine Yaw Operation for Aiding Active Wake Management
Applied Sciences
Active wake management (AWM) via yaw control has been discussed in recent years as a potential way to improve the power production of a wind farm. In such a technique, the wind turbines will be required to work frequently at misaligned yaw angles in order to reduce the vortices in the wake area behind the turbines. However, today, it is still not very clear about how yaw operation affects the dynamics and power generation performance of the wind turbines. To further understand the effects of yaw operation, numerical research is conducted in this paper. In the study, the optimal size of the flow field used in the computational fluid dynamics (CFD) calculation was specifically discussed in order to obtain an efficient numerical model to quickly and accurately predict the dynamics and the performance of the turbines. Through this research, the correlation between the blade loads during yaw and non-yaw operations is established for aiding yaw control, and the blade loads and power gener...
Yaw-Misalignment and its Impact on Wind Turbine Loads and Wind Farm Power Output
Journal of Physics: Conference Series, 2016
To make wind energy cost competitive with traditional resources, wind turbines are commonly placed in groups. Aerodynamic interaction between the turbines causes sub-optimal energy production. A control strategy to mitigate these losses is by redirecting the wake by yaw misalignment. This paper aims to assess the influence of load variations of the rotor due to partial wake overlap and presents a combined optimization of the power and loads using wake redirection. For this purpose, we design a computational framework which computes the wind farm power production and the wind turbine rotor loads based on the yaw settings. The simulation results show that partial wake overlap can significantly increase asymmetric loading of the rotor disk and that yaw misalignment is beneficial in situations where the wake can be sufficiently directed away from the downstream turbine.
Comparative study on the wake deflection behind yawed wind turbine models
Journal of Physics: Conference Series, 2017
In this wind tunnel campaign, detailed wake measurements behind two different model wind turbines in yawed conditions were performed. The wake deflections were quantified by estimating the rotor-averaged available power within the wake. By using two different model wind turbines, the influence of the rotor design and turbine geometry on the wake deflection caused by a yaw misalignment of 30 • could be judged. It was found that the wake deflections three rotor diameters downstream were equal while at six rotor diameters downstream insignificant differences were observed. The results compare well with previous experimental and numerical studies.
Field investigation on the influence of yaw misalignment on the propagation of wind turbine wakes
Wind Energy, 2018
A comprehensive understanding of the wake development of wind turbines is essential for improving the power yield of wind farms and for reducing the structural loading of the turbines. Reducing the overall negative impact of wake flows on individual turbines in a farm is one goal of wind farm control. We aim to demonstrate the applicability of yaw control for deflecting wind turbine wakes in a full-scale field experiment. For this purpose, we conducted a measurement campaign at a multimegawatt onshore wind turbine including inflow and wake flow measurements using ground-and nacelle-based long-range light detection and ranging devices. Yaw misalignments of the turbine with respect to the inflow direction of up to 20 • were investigated. We were able to show that under neutral atmospheric conditions, these turbine misalignments cause lateral deflections of its wake. Larger yaw misalignments resulted in greater wake deflection. Because of the inherent struggle in capturing complex and highly dynamic ambient conditions in the field using a limited number of sensors, we particularly focused on providing a comprehensive and comprehensible description of the measurement setup, including the identification of potential uncertainties.
Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy
The concept of wake steering on wind farms for power maximization has gained significant popularity over the last decade. Recent field trials described in the literature not only demonstrate the real potential of wake steering on commercial wind farms but also show that wake steering does not yet consistently lead to an increase in energy production for all inflow conditions. Moreover, a recent survey among experts shows that validation of the concept currently remains the largest barrier to adoption. In response, this article presents the results of a field experiment investigating wake steering in three-turbine arrays at an onshore wind farm in Italy. This experiment was performed as part of the European CL-Windcon project. While important, this experiment excludes an analysis of the structural loads and focuses solely on the effects of wake steering on power production. The measurements show increases in power production of up to 35 % for two-turbine interactions and up to 16 % for three-turbine interactions. However, losses in power production are seen for various regions of wind directions too. In addition to the gains achieved through wake steering at downstream turbines, more interesting to note is that a significant share in gains is from the upstream turbines, showing an increased power production of the yawed turbine itself compared to baseline operation for some wind directions. Furthermore, the surrogate model, while capturing the general trends of wake interaction, lacks the details necessary to accurately represent the measurements. This article supports the notion that further research is necessary, notably on the topics of wind farm modeling and experiment design, before wake steering will lead to consistent energy gains on commercial wind farms.
Statistical meandering wake model and its application to yaw-angle optimisation of wind farms
Journal of Physics: Conference Series, 2017
The wake produced by a wind turbine is dynamically meandering and of rather narrow nature. Only when looking at large time averages, the wake appears to be static and rather broad, and is then well described by simple engineering models like the Jensen wake model (JWM). We generalise the latter deterministic models to a statistical meandering wake model (SMWM), where a random directional deflection is assigned to a narrow wake in such a way that on average it resembles a broad Jensen wake. In a second step, the model is further generalised to wind-farm level, where the deflections of the multiple wakes are treated as independently and identically distributed random variables. When carefully calibrated to the Nysted wind farm, the ensemble average of the statistical model produces the same wind-direction dependence of the power efficiency as obtained from the standard Jensen model. Upon using the JWM to perform a yaw-angle optimisation of wind-farm power output, we find an optimisation gain of 6.7% for the Nysted wind farm when compared to zero yaw angles and averaged over all wind directions. When applying the obtained JWM-based optimised yaw angles to the SMWM, the ensemble-averaged gain is calculated to be 7.5%. This outcome indicates the possible operational robustness of an optimised yaw control for real-life wind farms.
Survey of modelling methods for wind turbine wakes and wind farms
Wind Energy, 1999
This article provides an overview and analysis of different wake-modelling methods which may be used as prediction and design tools for both wind turbines and wind farms. We also survey the available data concerning the measurement of wind magnitudes in both single wakes and wind farms, and of loading effects on wind turbines under single-and multiple-wake conditions. The relative merits of existing wake and wind farm models and their ability to reproduce experimental results are discussed. Conclusions are provided concerning the usefulness of the different modelling approaches examined, and dif®cult issues which have not yet been satisfactorily treated and which require further research are discussed.
A Review of Wind Turbine Yaw Aerodynamics
The fundamental physics of HAWT aerodynamics in yaw is reviewed with reference to some of the latest scientific research covering both measurements and numerical modelling. The purpose of this chapter is to enable a concise overview of this important subject in rotor aerodynamics. This will provide the student, researcher or industry professional a quick reference. Detailed references are included for those who need to delve deeper into the subject. The chapter is also restricted to the aerodynamics of single rotors and their wake characteristics. Far wake and wind turbine to turbine effects experienced in wind farms are excluded from this review. Finally, a future outlook is provided in order to inspire further research in yawed aerodynamics.
Initial Results From a Field Campaign of Wake Steering Applied at a Commercial Wind Farm: Part 1
Wind Energy Science Discussions
Wake steering is a form of wind farm control in which turbines use yaw offsets to affect wakes in order to yield an increase in total energy production. In this first phase of a study of wake steering at a commercial wind farm, two turbines implement a schedule of offsets. Results exploring the observed performance of wake steering are presented, as well as some first lessons learned. For two closely spaced turbines, an approximate 13% increase in energy was measured on the downstream turbine over a 10 • sector. Additionally, the increase of energy for the combined upstream/downstream pair was found to be in-line with prior predictions. Finally, the influence of atmospheric stability over the results is explored.
Sensitivity analysis of wake steering optimisation for wind farm power maximisation
Modern large-scale wind farms consist of multiple turbines clustered together, usually in well-structured formations. Clustering has a number of drawbacks during a wind farm's operation, as some of the downstream turbines will inevitably operate in the wake of those upstream, with a significant reduction in power output and an increase in fatigue loads. Wake steering, a control strategy in which upstream wind turbines are misaligned with the wind to redirect their wakes away from downstream turbines, is a promising strategy to mitigate power losses. The purpose of this work is to investigate the sensitivity of open-loop wake steering optimisation in which an internal predictive wake model is used to determine the farm power output as a function of the turbine yaw angles. Three different layouts are investigated with increasing levels of complexity. A simple 2×1 farm layout in aligned conditions is first considered, allowing for a careful investigation of sensitivity to wake models and operational set-points. A medium-complexity case of a generic 5 × 5 farm layout in aligned conditions is examined, to enable the study of a more complex design space. The final layout investigated is the Horns Rev wind farm (80 turbines), for which there has been very little study of the performance or sensitivity of wake steering optimisation. Overall, the results indicate a strong sensitivity of wake steering strategies to both analytical wake model choice, and to the particular implementation of algorithms used for optimisation. Significant variability can be observed in both farm power improvement and optimal yaw settings, depending on the optimisation setup. Through a statistical analysis of the impact of optimiser initialisation and a study of the multi-modal and discontinuous nature of the underlying farm power objective functions, this study shows that the uncovered sensitivities represent a fundamental challenge to robustly identifying globally optimal solutions for the high-dimensional optimisation problems arising from realistic wind farm layouts. This paper proposes a simple strategy for sensitivity mitigation by introducing additional optimisation constraints, leading to higher farm power improvements and more consistent, coherent, and practicable optimal yaw angle settings.