Amide linkages mimic phosphates in RNA interactions with proteins and are well tolerated in the guide strand of short interfering RNAs (original) (raw)
Abstract
While the use of RNA interference (RNAi) in molecular biology and functional genomics is a wellestablished technology, in vivo applications of synthetic short interfering RNAs (siRNAs) require chemical modifications. We recently found that amides as non-ionic replacements for phosphodiesters may be useful modifications for optimization of siRNAs. Herein, we report a comprehensive study of systematic replacement of a single phosphate with an amide linkage throughout the guide strand of siR-NAs. The results show that amides are surprisingly well tolerated in the seed and central regions of the guide strand and increase the silencing activity when placed between nucleosides 10 and 12, at the catalytic site of Argonaute. A potential explanation is provided by the first crystal structure of an amidemodified RNA-DNA with Bacillus halodurans RNase H1. The structure reveals how small changes in both RNA and protein conformation allow the amide to establish hydrogen bonding interactions with the protein. Molecular dynamics simulations suggest that these alternative binding modes may compensate for interactions lost due to the absence of a phosphodiester moiety. Our results suggest that an amide can mimic important hydrogen bonding interactions with proteins required for RNAi activity and may be a promising modification for optimization of biological properties of siRNAs.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (68)
- Wan,W.B. and Seth,P.P. (2016) The medicinal chemistry of therapeutic oligonucleotides. J. Med. Chem., 59, 9645-9667.
- Khvorova,A. and Watts,J.K. (2017) The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol., 35, 238-248.
- Watts,J.K. and Corey,D.R. (2012) Silencing disease genes in the laboratory and the clinic. J. Pathol., 226, 365-379.
- Deleavey,G.F. and Damha,M.J. (2012) Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol., 19, 937-954.
- Bramsen,J.B. and Kjems,J. (2013) Methods Mol. Biol., Springer, NY, Vol. 942, pp. 87-109.
- Bramsen,J.B., Grunweller,A., Hartmann,R.K. and Kjems,J. (2014) In: Hartmann,RK, Schon,ABA. and Westhof,E (eds). Handbook of RNA Biochemistry, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 1243-1277.
- Bramsen,J.B. and Kjems,J. (2012) Development of therapeutic-grade small interfering RNAs by chemical engineering. Front. Genet.: Non-Coding RNA, 3, 154.
- Latorre,A., Latorre,A. and Somoza,A. (2016) Modified RNAs in CRISPR/Cas9: An old trick works again. Angew. Chem., Int. Ed., 55, 3548-3550.
- Kelley,M.L., Strezoska,Z., He,K., Vermeulen,A. and Smith,A.v.B. (2016) Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing. J. Biotechnol., 233, 74-83.
- Eguchi,A. and Dowdy,S.F. (2009) siRNA delivery using peptide transduction domains. Trends Pharmacol. Sci., 30, 341-345.
- Joshua-Tor,L. and Hannon,G.J. (2011) Ancestral roles of small RNAs: an ago-centric perspective. Cold Spring Harbor Perspect. Biol., 3, a003772.
- Carthew,R.W. and Sontheimer,E.J. (2009) Origins and mechanisms of miRNAs and siRNAs. Cell, 136, 642-655.
- Sheng,G., Zhao,H., Wang,J., Rao,Y., Tian,W., Swarts,D.C., van der Oost,J., Patel,D.J. and Wang,Y. (2014) Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc. Natl. Acad. Sci. U.S.A., 111, 652-657.
- Nakanishi,K., Weinberg,D.E., Bartel,D.P. and Patel,D.J. (2012) Structure of yeast Argonaute with guide RNA. Nature, 486, 368-374.
- Elkayam,E., Kuhn Claus,D., Tocilj,A., Haase Astrid,D., Greene Emily,M., Hannon Gregory,J. and Joshua-Tor,L. (2012) The structure of human argonaute-2 in complex with miR-20a. Cell, 150, 100-110.
- Faehnle,C.R., Elkayam,E., Haase,A.D., Hannon,G.J. and Joshua-Tor,L. (2013) The making of a slicer: activation of human argonaute-1. Cell Rep., 3, 1901-1909.
- Meade,B.R., Gogoi,K., Hamil,A.S., Palm-Apergi,C., Berg,A.v.d., Hagopian,J.C., Springer,A.D., Eguchi,A., Kacsinta,A.D., Dowdy,C.F. et al. (2014) Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. Nat. Biotechnol., 32, 1256-1261.
- Eckstein,F. (2014) Phosphorothioates, Essential Components of Therapeutic Oligonucleotides. Nucleic Acid Ther., 24, 374-387.
- Braasch,D.A., Jensen,S., Liu,Y., Kaur,K., Arar,K., White,M.A. and Corey,D.R. (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry, 42, 7967-7975.
- Harborth,J., Elbashir,S.M., Vandenburgh,K., Manninga,H., Scaringe,S.A., Weber,K. and Tuschl,T. (2003) Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucl. Acid Drug Dev., 13, 83-105.
- Amarzguioui,M., Holen,T., Babaie,E. and Prydz,H. (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res., 31, 589-595.
- Hall,A.H.S., Wan,J., Shaughnessy,E.E., Ramsay Shaw,B. and Alexander,K.A. (2004) RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res., 32, 5991-6000.
- Yang,X., Sierant,M., Janicka,M., Peczek,L., Martinez,C., Hassell,T., Li,N., Li,X., Wang,T. and Nawrot,B. (2012) Gene silencing activity of siRNA molecules containing phosphorodithioate substitutions. ACS Chem. Biol., 7, 1214-1220.
- Wu,S.Y., Yang,X., Gharpure,K.M., Hatakeyama,H., Egli,M., McGuire,M.H., Nagaraja,A.S., Miyake,T.M., Rupaimoole,R., Pecot,C.V. et al. (2014) 2 -OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumor activity. Nat. Commun., 5, 4459-4459.
- Threlfall,R.N., Torres,A.G., Krivenko,A., Gait,M.J. and Caruthers,M.H. (2012) Synthesis and biological activity of phosphonoacetate-and thiophosphonoacetate-modified 2 -O-methyl oligoribonucleotides. Org. Biomol. Chem., 10, 746-754.
- Idziak,I., Just,G., Damha,M.J. and Giannaris,P.A. (1993) Synthesis and hybridization properties of amide-linked thymidine dimers incorporated into oligodeoxynucleotides. Tetrahedron Lett., 34, 5417-5420.
- De Mesmaeker,A., Waldner,A., Lebreton,J., Hoffmann,P., Fritsch,V., Wolf,R.M. and Freier,S.M. (1994) Amides as a new type of backbone modifications in oligonucleotides. Angew. Chem., Int. Ed. Engl., 33, 226-229.
- Lebreton,J., Waldner,A., Lesueur,C. and De Mesmaeker,A. (1994) Antisense oligonucleotides with alternating phosphodiester-"amide-3" linkages. Synlett, 137-140.
- De Mesmaeker,A., Lesueur,C., Bevierre,M.O., Waldner,A., Fritsch,V. and Wolf,R.M. (1996) Amide backbones with conformationally restricted furanose rings: highly improved affinity of the modified oligonucleotides for their RNA complements. Angew.Chem., Int. Ed., 35, 2790-2794.
- De Mesmaeker,A., Lebreton,J., Jouanno,C., Fritsch,V., Wolf,R.M. and Wendeborn,S. (1997) Amide-modified oligonucleotides with preorganized backbone and furanose rings. Highly increased thermodynamic stability of the duplexes formed with their RNA and DNA complements. Synlett, 1287-1290.
- Rozners,E., Katkevica,D., Bizdena,E. and Str ömberg,R. (2003) Synthesis and properties of RNA analogs having amides as interuridyl linkages at selected positions. J. Am. Chem. Soc., 125, 12125-12136.
- Selvam,C., Thomas,S., Abbott,J., Kennedy,S.D. and Rozners,E. (2011) Amides as excellent mimics of phosphate linkages in RNA. Angew. Chem., Int. Ed., 50, 2068-2070.
- Mutisya,D., Selvam,C., Lunstad,B.D., Pallan,P.S., Haas,A., Leake,D., Egli,M. and Rozners,E. (2014) Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs. Nucleic Acids Res., 42, 6542-6551.
- Tanui,P., Kennedy,S.D., Lunstad,B.D., Haas,A., Leake,D. and Rozners,E. (2014) Synthesis, biophysical studies and RNA interference activity of RNA having three consecutive amide linkages. Org. Biomol. Chem., 12, 1207-1210.
- Iwase,R., Toyama,T. and Nishimori,K. (2007) Solid-phase synthesis of modified RNAs containing amide-linked oligoribonucleosides at their 3 -end and their application to siRNA. Nucleosides, Nucleotides Nucleic Acids, 26, 1451-1454.
- Iwase,R., Kurokawa,R. and Ueno,J. (2009) Synthesis of modified double stranded RNAs containing duplex regions between amide-linked RNA and RNA at both ends and enhanced nuclease resistance. Nucleic Acids Symp. Ser., 53, 119-120.
- Iwase,R., Miyao,H., Toyama,T. and Nishimori,K. (2006) Synthesis and properties of modified siRNA having amide-linked oligoribonucleosides at their 3 overhang regions. Nucleic Acids Symp. Ser., 175-176.
- Nowotny,M., Gaidamakov,S.A., Crouch,R.J. and Yang,W. (2005) Crystal structures of RNase H bound to an RNA/DNA hybrid: Substrate specificity and metal-dependent catalysis. Cell, 121, 1005-1016.
- Jancarik,J. and Kim,S.H. (1991) Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Crystallogr., 24, 409-411.
- Otwinowski,Z. and Minor,W. (1997) Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol., 276, 307-326.
- Vagin,A. and Teplyakov,A. (1997) MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr., 30, 1022-1025.
- Winn,M.D., Ballard,C.C., Cowtan,K.D., Dodson,E.J., Emsley,P., Evans,P.R., Keegan,R.M., Krissinel,E.B., Leslie,A.G.W., McCoy,A. et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr., D67, 235-242.
- Murshudov,G.N., Vagin,A.A. and Dodson,E.J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr., D53, 240-255.
- Emsley,P. and Cowtan,K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr., D60, 2126-2132.
- Pettersen,E.F., Goddard,T.D., Huang,C.C., Couch,G.S., Greenblatt,D.M., Meng,E.C. and Ferrin,T.E. (2004) UCSF Chimera-A visualization system for exploratory research and analysis. J. Comput. Chem., 25, 1605-1612.
- Elkayam,E., Kuhn,C.D., Tocilj,A., Haase,A.D., Greene,E.M., Hannon,G.J. and Joshua-Tor,L. (2012) The structure of human argonaute-2 in complex with miR-20a. Cell, 150, 100-110.
- Bayly,C.I., Cieplak,P., Cornell,W. and Kollman,P.A. (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem., 97, 10269-10280.
- Wee,L.M., Flores-Jasso,C.F., Salomon,W.E. and Zamore,P.D. (2012) Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell, 151, 1055-1067.
- Tripp,R.A. and Karpilow,J.M. (2014) Frontiers in RNAi. Bentham Science.
- Bobbin,M.L. and Rossi,J.J. (2016) RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu. Rev. Pharmacol. Toxicol., 56, 103-122.
- Zuckerman,J.E. and Davis,M.E. (2015) Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discovery, 14, 843-856.
- Wittrup,A. and Lieberman,J. (2015) Knocking down disease: a progress report on siRNA therapeutics. Nat. Rev. Genet., 16, 543-552.
- Parker,J.S., Roe,S.M. and Barford,D. (2005) Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature, 434, 663-666.
- Ma,J.B., Yuan,Y.R., Meister,G., Pei,Y., Tuschl,T. and Patel,D.J. (2005) Structural basis for 5 -end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature, 434, 666-670.
- Schirle,N.T. and MacRae,I.J. (2012) The crystal structure of human Argonaute2. Science, 336, 1037-1040.
- Jackson,A.L., Burchard,J., Leake,D., Reynolds,A., Schelter,J., Guo,J., Johnson,J.M., Lim,L., Karpilow,J., Nichols,K. et al. (2006) Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing. RNA, 12, 1197-1205.
- Ui-Tei,K., Naito,Y., Zenno,S., Nishi,K., Yamato,K., Takahashi,F., Juni,A. and Saigo,K. (2008) Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res., 36, 2136-2151.
- Bramsen,J.B., Pakula,M.M., Hansen,T.B., Bus,C., Langkjaer,N., Odadzic,D., Smicius,R., Wengel,S.L., Chattopadhyaya,J., Engels,J.W. et al. (2010) A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects. Nucleic Acids Res., 38, 5761-5773.
- Vaish,N., Chen,F., Seth,S., Fosnaugh,K., Liu,Y., Adami,R., Brown,T., Chen,Y., Harvie,P., Johns,R. et al. (2011) Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs. Nucleic Acids Res., 39, 1823-1832.
- Ui-Tei,K. (2013) Optimal choice of functional and off-target effect-reduced siRNAs for RNAi therapeutics. Front. Genet., 4, 1-4.
- Gu,S., Zhang,Y., Jin,L., Huang,Y., Zhang,F., Bassik,M.C., Kampmann,M. and Kay,M.A. (2014) Weak base pairing in both seed and 3 regions reduces RNAi off-targets and enhances si/shRNA designs. Nucleic Acids Res., 42, 12169-12176.
- Schirle,N.T., Sheu-Gruttadauria,J. and MacRae,I.J. (2014) Structural basis for microRNA targeting. Science, 346, 608-613.
- Nakanishi,K., Ascano,M., Gogakos,T., Ishibe-Murakami,S., Serganov,A.A., Briskin,D., Morozov,P., Tuschl,T. and Patel,D.J. (2013) Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Rep., 3, 1893-1900.
- Gong,W. and Desaulniers,J.-P. (2012) Gene-silencing properties of siRNAs that contain internal amide-bond linkages. Bioorg. Med. Chem. Lett., 22, 6934-6937.
- Alagia,A. and Eritja,R. (2016) siRNA and RNAi optimization. Wiley Interdiscipl. Rev. RNA, 7, 316-329.
- Wang,Y., Juranek,S., Li,H., Sheng,G., Wardle,G.S., Tuschl,T. and Patel,D.J. (2009) Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature, 461, 754-761.
- Khvorova,A., Reynolds,A. and Jayasena,S.D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell, 115, 209-216.
- Addepalli,H., Meena, Peng,C.G., Wang,G., Fan,Y., Charisse,K., Jayaprakash,K.N., Rajeev,K.G., Pandey,R.K., Lavine,G. et al. (2010) Modulation of thermal stability can enhance the potency of siRNA. Nucleic Acids Res., 38, 7320-7331.