Gene expression alterations in doxorubicin resistant MCF7 breast cancer cell line (original) (raw)
Related papers
Frontiers in Oncology
IntroductionThe molecular mechanism of chemotherapy resistance in breast cancer is not well understood. The identification of genes associated with chemoresistance is critical for a better understanding of the molecular processes driving resistance.MethodsThis study used a co-expression network analysis of Adriamycin (or doxorubicin)-resistant MCF-7 (MCF-7/ADR) and its parent MCF-7 cell lines to explore the mechanisms of drug resistance in breast cancer. Genes associated with doxorubicin resistance were extracted from two microarray datasets (GSE24460 and GSE76540) obtained from the Gene Expression Omnibus (GEO) database using the GEO2R web tool. The candidate differentially expressed genes (DEGs) with the highest degree and/or betweenness in the co-expression network were selected for further analysis. The expression of major DEGs was validated experimentally using qRT–PCR.ResultsWe identified twelve DEGs in MCF-7/ADR compared with its parent MCF-7 cell line, including 10 upregulat...
2000
Drug resistance in cancer is a major obstacle to successful chemotherapy. Cancer cells exposed to antitumor drugs may be directly induced to express a subset of genes that could confer resistance, thus allowing some cells to escape killing and form the relapsed resistant tumor. Alternatively, some cancer cells may be expressing an array of genes that could confer intrinsic resistance, and exposure to cytotoxic drugs select for the survival of these cells that form the relapsed tumor. We have used cDNA microarray to monitor the expression profiles of MCF-7 cells that are either transiently treated with doxorubicin or selected for resistance to doxorubicin. Our results showed that transient treatment with doxorubicin altered the expression of a diverse group of genes in a time-dependent manner. A subset of the induced genes was also found to be constitutively overexpressed in cells selected for resistance to doxorubicin. This distinct set of overlapping genes may represent the signature profile of doxorubicin-induced gene expression and resistance in cancer cells. Our studies demonstrate the feasibility of obtaining potential molecular profile or fingerprint of anticancer drugs in cancer cells by cDNA microarray, which might yield further insights into the mechanisms of drug resistance and suggest alternative methods of treatment.
International journal of molecular medicine, 2018
Breast cancer exhibits the highest incidence of all cancer types and is the 2nd leading cause of cancer mortality in women. Up to 82% of breast cancer patients receive a chemotherapy‑containing treatment regimen. However, numerous breast tumors recur within 10 years following an initial response and are frequently resistant to previous therapeutic agents. Thus, to analyze the crucial factors, and whether the development of resistance in tumor cells follows certain patterns, is of great importance. In the present study, the clinical treatment schedule of the frequently used chemotherapeutic drug doxorubicin was applied in an in vitro model, the Molecular Evolution Assay (MEA), leading to resistance formation. By investigating the alterations in protein expression in MCF‑7 breast cancer cells with three biological replicates, it was observed that the development of resistance to doxorubicin is a multi‑directed process. The number and composition of the differentially expressed protein...
Cancer research, 2000
Drug resistance in cancer is a major obstacle to successful chemotherapy. Cancer cells exposed to antitumor drugs may be directly induced to express a subset of genes that could confer resistance, thus allowing some cells to escape killing and form the relapsed resistant tumor. Alternatively, some cancer cells may be expressing an array of genes that could confer intrinsic resistance, and exposure to cytotoxic drugs select for the survival of these cells that form the relapsed tumor. We have used cDNA microarray to monitor the expression profiles of MCF-7 cells that are either transiently treated with doxorubicin or selected for resistance to doxorubicin. Our results showed that transient treatment with doxorubicin altered the expression of a diverse group of genes in a time-dependent manner. A subset of the induced genes was also found to be constitutively overexpressed in cells selected for resistance to doxorubicin. This distinct set of overlapping genes may represent the signatu...
Journal of Experimental & Clinical Cancer Research
Background Triple negative breast cancer (TNBC) is a heterogeneous disease with aggressive behavior and an unfavorable prognosis rate. Due to the lack of surface receptors, TNBC must be intensely investigated in order to establish a suitable treatment for patients with this pathology. Chemoresistance is an important reason for therapeutic failure in TNBC. Method The aim of this study was to investigate the effect of doxorubicin in TNBC cell lines and to highlight cellular and molecular alterations after a long exposure to doxorubicin. Results The results revealed that doxorubicin significantly increased the half maximal inhibitory concentration (IC50) values at P12 and P24 compared to parenteral cells P0. Modifications in gene expression were investigated through microarray technique, and for detection of mutational pattern was used Next Generation Sequencing (NGS). 196 upregulated and 115 downregulated genes were observed as effect of multiple dose exposure, and 15 overexpressed ge...
BMC Cancer, 2012
Background: Since proteins involved in chemotherapy drug pharmacokinetics and pharmacodynamics have a strong impact on the uptake, metabolism, and efflux of such drugs, they likely play critical roles in resistance to chemotherapy drugs in cancer patients. Methods: To investigate this hypothesis, we conducted a whole genome microarray study to identify difference in the expression of genes between isogenic doxorubicin-sensitive and doxorubicin-resistant MCF-7 breast tumour cells. We then assessed the degree of over-representation of doxorubicin pharmacokinetic and pharmacodynamic genes in the dataset of doxorubicin resistance genes. Results: Of 27,958 Entrez genes on the array, 7.4 per cent or 2,063 genes were differentially expressed by ≥ 2-fold between wildtype and doxorubicin-resistant cells. The false discovery rate was set at 0.01 and the minimum p value for significance for any gene within the "hit list" was 0.01. Seventeen and 43 per cent of doxorubicin pharmacokinetic genes were over-represented in the hit list, depending upon whether the gene name was identical or within the same gene family, respectively. The most over-represented genes were within the 1C and 1B families of aldo-keto reductases (AKRs), which convert doxorubicin to doxorubicinol. Other genes convert doxorubicin to other metabolites or affect the influx, efflux, or cytotoxicity of the drug. In further support of the role of AKRs in doxorubicin resistance, we observed that, in comparison to doxorubicin, doxorubincol exhibited dramatically reduced cytotoxicity, reduced DNA-binding activity, and strong localization to extra nuclear lysosomes. Pharmacologic inhibition of the above AKRs in doxorubicin-resistant cells increased cellular doxorubicin levels, restored doxorubicin cytotoxicity and re-established doxorubicin localization to the nucleus. The properties of doxorubicinol were unaffected. Conclusions: These findings demonstrate the utility of using curated pharmacokinetic and pharmacodynamic knowledge bases to identify highly relevant genes associated with doxorubicin resistance. The induction of one or more of these genes was found to be correlated with changes in the drug's properties, while inhibiting one specific class of these genes (the AKRs) increased cellular doxorubicin content and restored drug DNA binding, cytotoxicity, and subcellular localization.
Gene Expression Profile Associated with Response to Doxorubicin-Based Therapy in Breast Cancer
Clinical Cancer Research, 2005
This study was designed to identify genes that could predict response to doxorubicinbased primary chemotherapy in breast cancer patients. Experimental Design: Biopsy samples were obtained before primary treatment with doxorubicin and cyclophosphamide. RNA was extracted and amplified and gene expression was analyzed using cDNA microarrays. Results: Response to chemotherapy was evaluated in 51patients, and based on Response Evaluation Criteria in Solid Tumors guidelines, 42 patients, who presented at least a partial response (z30% reduction in tumor dimension), were classified as responsive. Gene profile of samples, divided into training set (n = 38) and independent validation set (n = 13), were at first analyzed against a cDNA microarray platform containing 692 genes. Unsupervised clustering could not separate responders from nonresponders. A classifier was identified comprising EMILIN1, FAM14B, and PBEF, which however could not correctly classify samples included in the validation set. Our next step was to analyze gene profile in a more comprehensive cDNA microarray platform, containing 4,608 open reading frame expressed sequence tags. Seven samples of the initial training set (all responder patients) could not be analyzed. Unsupervised clustering could correctly group all the resistant samples as well as at least 85% of the sensitive samples. Additionally, a classifier, including PRSS11, MTSS1, and CLPTM1, could correctly distinguish 95.4% of the 44 samples analyzed, with only two misclassifications, one sensitive sample and one resistant tumor. The robustness of this classifier is 2.5 greater than the first one. Conclusion: A trio of genes might potentially distinguish doxorubicin-responsive from nonresponsive tumors, but further validation by a larger number of samples is still needed. Primary chemotherapy in breast cancer is associated to the same survival benefit as adjuvant chemotherapy and offers the advantage of an increased likelihood of breast conservation (1, 2). Many drug regimens have been used for a varied number of cycles, and response rates from 65% to 100% have been achieved in operable breast cancer; two of the most used, doxorubicin and cyclophosphamide, when given before surgery, are associated with an 80% response rate of breast tumor size (1, 3). Contrariwise, some patients may not experience a tumor reduction with a particular drug regimen, and if identified, they could be offered other active drug regimens or be submitted, at once, to surgical intervention. Although predictive factors might help selection of the appropriate treatment for each individual patient, to date, there is no single marker with a predictive value for a patient's response to chemotherapy (4). A few studies have been looking for a gene profile that might predict response to primary chemotherapy in breast cancer (5-8). There is therefore much interest in breast cancer transcriptional profiling and its role in tailoring therapy. This study was undertaken to identify genes that could predict response to doxorubicin-based primary chemotherapy in breast cancer patients.
A microarray based expression profiling of paclitaxel and vincristine resistant MCF-7 cells
European Journal of Pharmacology, 2011
Resistance to the broad spectrum of chemotherapeutic agents in cancer cell lines and tumors has been called multiple drug resistance (MDR). In this study, the molecular mechanisms of resistance to two anticancer agents (paclitaxel and vincristine) in mammary carcinoma cell line MCF-7 were investigated. Drug resistant sublines to paclitaxel (MCF-7/Pac) and vincristine (MCF-7/Vinc) that were developed from sensitive MCF-7 cells (MCF-7/S) were used. cDNA microarray analysis was performed for the RNA samples of sensitive and resistant cells in duplicate experiments. GeneSpring GX 7.3.1 Software was used in data analysis. The results indicated that the upregulation of MDR1 gene is the dominating mechanism of the paclitaxel and vincristine drug resistance. Additionally the upregulation of the genes encoding the detoxifying enzymes (i.e. GSTP1) was observed. Significant downregulation of apoptotic genes (i.e. PDCD2/4/6/8) and upregulation of some cell cycle regulatory genes (CDKN2A, CCNA2 etc.) was seen which may be in close relation to MDR in breast cancer. Drug resistant cancer cells exhibit different gene expression patterns depending on drug treatment, and each drug resistance phenotype is probably genetically different. Further functional studies are needed to demonstrate the complete set of genes contributing to the drug resistance phenotype in breast cancer cells.