Autophagy and cardiac diseases: Therapeutic potential of natural products (original) (raw)

Autophagy modulation: a potential therapeutic approach in cardiac hypertrophy

American Journal of Physiology - Heart and Circulatory Physiology

Autophagy is an evolutionarily conserved process used by the cell to degrade cytoplasmic contents for quality control, survival for temporal energy crisis, and catabolism and recycling. Rapidly increasing evidence has revealed an important pathogenic role of altered activity of the autophagosome-lysosome pathway (ALP) in cardiac hypertrophy and heart failure. Although an early study suggested that cardiac autophagy is increased and that this increase is maladaptive to the heart subject to pressure overload, more recent reports have overwhelmingly supported that myocardial ALP insufficiency results from chronic pressure overload and contributes to maladaptive cardiac remodeling and heart failure. This review examines multiple lines of preclinical evidence derived from recent studies regarding the role of autophagic dysfunction in pressure-overloaded hearts, attempts to reconcile the discrepancies, and proposes that resuming or improving ALP flux through coordinated enhancement of bot...

Cardiac Glycosides as Autophagy Modulators

Cells

Drug repositioning is one of the leading strategies in modern therapeutic research. Instead of searching for completely novel substances and demanding studies of their biological effects, much attention has been paid to the evaluation of commonly used drugs, which could be utilized for more distinct indications than they have been approved for. Since treatment approaches for cancer, one of the most extensively studied diseases, have still been very limited, great effort has been made to find or repurpose novel anticancer therapeutics. One of these are cardiac glycosides, substances commonly used to treat congestive heart failure or various arrhythmias. Recently, the antitumor properties of cardiac glycosides have been discovered and, therefore, these compounds are being considered for anticancer therapy. Their mechanism of antitumor action seems to be rather complex and not fully uncovered yet, however, autophagy has been confirmed to play a key role in this process. In this review ...

Autophagy in heart disease: A strong hypothesis for an untouched metabolic reserve

Medical Hypotheses, 2011

Autophagy is a conserved catabolic process for long-lived proteins and organelles and is primarily responsible for nonspecific degradation of redundant or faulty cell components. Although autophagy has been described as the cell's major adaptive strategy in response to metabolic challenges, its influence on the cell's energy profile is poorly understood. In the myocardium, autophagy is active at basal levels and is crucial for maintaining its contractile function. Defects in the autophagic machinery cause cardiac dysfunction and heart failure. In this paper we propose that (1) autophagy contributes significantly to the metabolic balance sheet of the heart. (2) Increased autophagy contributes to an improved myocardial energy profile through changing the cardiac substrate preference. (3) Substrates generated through autophagy give rise to an alternative for ATP production with an oxygen-sparing effect. These elements identify autophagy in a new context of myocardial metabolic interregulation, which we discuss in the settings of myocardial infarction, heart failure and the diabetic heart. It is hoped that the hypothesis presented can lead to new insights aimed at exploiting autophagy to improve existing metabolic-based therapy in heart disease.

The Importance of Autophagy and Proteostasis in Metabolic Cardiomyopathy

Cardiovascular Risk Factors in Pathology [Working Title]

Metabolic cardiomyopathy and other heart disorders are associated with proteostasis derailment and subsequent autophagy. Proteostasis is a process of protein homeostasis, and autophagy is a mechanism of self-degradation for surviving cells facing stressful conditions. Metabolic challenges have been linked to excess reactive oxygen species. Cardiomyocyte proteotoxicity, an important underlying pathologic mechanism in cardiac disease, is characterized by chronic accumulation of misfolded or unfolded proteins that can lead to proteotoxic formation or aggregation of soluble peptides. Autophagic processes are mediated by the ubiquitinproteasome and autophagy-lysosome systems, fundamental for cardiac adaptation to physiological and pathological stress. Cellular proteostasis alterations in cardiomyopathy are represented by myocardial remodeling and interstitial fibrosis with reduced diastolic function and arrhythmias. Autophagy regulation may be a potential therapeutic strategy for metabolic cardiomyopathy necessary for the treatment of fibrosis and cardiac tissue remodeling alterations. Furthermore, autophagy has been shown to be active in the perimeter of cardiovascular fibrotic tissue as mechanism of fibrosis recovery and scarring secondary to cell apoptosis. In the present work, we review the current knowledge on the role of autophagy and proteostasis in the pathogenesis of heart failure to resolve the ever-expanding epidemic of metabolic cardiomyopathy and heart failure associated with substantial morbidity and mortality.

Berberine attenuates adverse left ventricular remodeling and cardiac dysfunction after acute myocardial infarction in rats: role of autophagy

Clinical and experimental pharmacology & physiology, 2014

The present study aimed to test the hypothesis that berberine, a plant-derived anti-oxidant, attenuates adverse left ventricular remodelling and improves cardiac function in a rat model of myocardial infarction (MI). Furthermore, the potential mechanisms that mediated the cardioprotective actions of berberine, in particular the effect on autophagy, were also investigated. Acute MI was induced by ligating the left anterior descending coronary artery of Sprague-Dawley rats. Cardiac function was assessed by transthoracic echocardiography. The protein activity/levels of autophagy related to signalling pathways (e.g. LC-3B, Beclin-1) were measured in myocardial tissue by immunohistochemical staining and western blot. Four weeks after MI, berberine significantly prevented cardiac dysfunction and adverse cardiac remodelling. MI rats treated with low dose berberine (10 mg/kg per day) showed higher left ventricular ejection fraction and fractional shortening than those treated with high-dose...

Co-ordinated autophagy with resveratrol and γ-tocotrienol confers synergetic cardioprotection

Journal of Cellular and Molecular Medicine, 2009

This study compared two dietary phytochemicals, grape-derived resveratrol and palm oil-derived γ-tocotrienol, either alone or in combination, on the contribution of autophagy in cardioprotection during ischaemia and reperfusion. Sprague-Dawley rats weighing between 250 and 300 g were randomly assigned to one of the following groups: vehicle, ischaemia/reperfusion (I/R), resveratrol + I/R, γ-tocotrienol + I/R, resveratrol +γ-tocotrienol + I/R. For resveratrol treatments, the rats were gavaged with resveratrol (2.5 mg/kg) for 15 days while for γ-tocotrienol experiments the rats were gavaged with γ-tocotrienol (0.3 mg/kg) for 30 days. For the combined resveratrol +γ-tocotrienol experiments, the rats were gavaged with γ-tocotrienol for 15 days, and then gavaging continued with resveratrol along with γ-tocotrienol for a further period of 15 days. After 30 days, isolated perfused hearts were subjected to 30 min. of global ischaemia followed by 2 hrs of reperfusion. Our results showed for the first time that at least in part, the cardioprotection (evidenced from the ventricular performance, myocardial infarct size and cardiomyocyte apoptosis) with resveratrol and γ-toctrienol was achieved by their abilities to induce autophagy. Most importantly, resveratrol and γ-tocotrienol acted synergistically providing greater degree of cardioprotection simultaneously generating greater amount of survival signal through the activation of Akt-Bcl-2 survival pathway. Autophagy was accompanied by the activation of Beclin and LC3-II as well as mTOR signalling, which were inhibited by either 3-methyl adenine (3-MA) or Wortmannin. The autophagy was confirmed from the results of transmission electron microscopy and light microscopy as well as with confocal microscopy. It is tempting to speculate that during ischaemia and reperfusion autophagy along with enhanced survival signals helps to recover the cells from injury.

Enhanced autophagy ameliorates cardiac proteinopathy

Journal of Clinical Investigation, 2013

Basal autophagy is a crucial mechanism in cellular homeostasis, underlying both normal cellular recycling and the clearance of damaged or misfolded proteins, organelles and aggregates. We showed here that enhanced levels of autophagy induced by either autophagic gene overexpression or voluntary exercise ameliorated desmin-related cardiomyopathy (DRC). To increase levels of basal autophagy, we generated an inducible Tg mouse expressing autophagy-related 7 (Atg7), a critical and rate-limiting autophagy protein. Hearts from these mice had enhanced autophagy, but normal morphology and function. We crossed these mice with CryAB R120G mice, a model of DRC in which autophagy is significantly attenuated in the heart, to test the functional significance of autophagy activation in a proteotoxic model of heart failure. Sustained Atg7-induced autophagy in the CryAB R120G hearts decreased interstitial fibrosis, ameliorated ventricular dysfunction, decreased cardiac hypertrophy, reduced intracellular aggregates and prolonged survival. To determine whether different methods of autophagy upregulation have additive or even synergistic benefits, we subjected the autophagy-deficient CryAB R120G mice and the Atg7-crossed CryAB R120G mice to voluntary exercise, which also upregulates autophagy. The entire exercised Atg7-crossed CryAB R120G cohort survived to 7 months. These findings suggest that activating autophagy may be a viable therapeutic strategy for improving cardiac performance under proteotoxic conditions.

Therapeutic targeting of autophagy in myocardial infarction and heart failure Therapeutic targeting of autophagy in myocardial infarction and heart failure

2016

Introduction: Myocardial infarction (MI) is the leading cause of death. When MI is not lethal, heart failure (HF) is a major consequence with high prevalence and poor prognosis. The targeting of autophagy represents a potentially therapeutic approach for the treatment of both pathologies. Areas covered: PubMed searches were performed to discuss the current state of the art regarding the role of autophagy in MI and HF. We review available and potential approaches to modulate autophagy from a pharmacological and genetic perspective. We also discuss the targeting of autophagy in myocardial regeneration. Expert commentary: The targeting of autophagy has potential for the treatment of MI and HF. Autophagy is a process that takes place in virtually all cells of the body and thus, in order to evaluate this therapeutic approach in clinical trials, strategies that specifically target this process in the myo-cardium is required to avoid unwanted effects in other organs.

Molecular Mechanisms of Autophagy in the Cardiovascular System

Circulation Research, 2015

Autophagy is a catabolic recycling pathway triggered by various intra-or extracellular stimuli that is conserved from yeast to mammals. During autophagy, diverse cytosolic constituents are enveloped by double-membrane vesicles, autophagosomes, which later fuse with lysosomes or the vacuole to degrade their cargo. Dysregulation in autophagy is associated with a diverse range of pathologies including cardiovascular disease, the leading cause of death in the world. Accordingly, there is tremendous interest in modulating autophagy for therapeutic purposes. One complexity with regard to cardiovascular homeostasis, however, is that the timing of autophagic activity appears to be critical; for example, cardiomyocyte autophagy during ischemia/reperfusion can be either beneficial or harmful. Here, we review the molecular mechanisms that govern autophagosome formation and analyze the link between autophagy and cardiovascular disease.

Tuning flux: autophagy as a target of heart disease therapy

Current Opinion in Cardiology, 2011

Purpose of review-Despite maximum medical and mechanical support therapy, heart failure remains a relentlessly progressive disorder with substantial morbidity and mortality. Autophagy, an evolutionarily conserved process of cellular cannibalization, has been implicated in virtually all forms of cardiovascular disease. Indeed, its role is context dependent, antagonizing or promoting disease depending on the circumstance. Here, we review current understanding of the role of autophagy in the pathogenesis of heart failure and explore this pathway as a target of therapeutic intervention. Recent findings-In preclinical models of heart disease, cardiomyocyte autophagic flux is activated; indeed, its role in disease pathogenesis is the subject of intense investigation to define mechanism. Similarly, in failing human heart of a variety of etiologies, cardiomyocyte autophagic activity is upregulated, and therapy, such as with mechanical support systems, elicits declines in autophagy activity. However, when suppression of autophagy is complete, rapid and catastrophic cell death occurs, consistent with a model in which basal autophagic flux is required for proteostasis. Thus, a narrow zone of 'optimal' autophagy seems to exist. The challenge moving forward is to tune the stress-triggered autophagic response within that 'sweet spot' range for therapeutic benefit. Summary-Whereas we have known for some years of the participation of lysosomal mechanisms in heart disease, it is only recently that upstream mechanisms (autophagy) are being explored. The challenge for the future is to dissect the underlying circuitry and titrate the response into an optimal, proteostasis-promoting range in hopes of mitigating the ever-expanding epidemic of heart failure.